

Advanced LLM Optimizers

Yihan Jin, Ming Sun, Jiahe Geng, Shuchen Zhu, Kun Yuan

Peking University

Recall: Memory Consumption in LLM Training

➤ Memory = Model + Gradient + Optimizer States + Activation

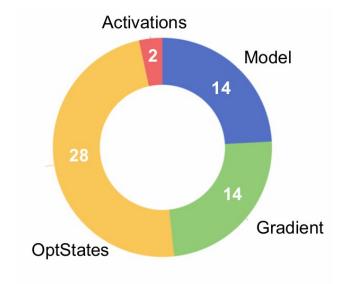
> Adam's Cost:

Model Parameter – Φ

Gradient - Φ

Optimizer States (First & Second moment) - 24

> Consequence:



The 7B-pretrained model(BF16) requires 28GB of Adam optimizer states.

Goal: Decrease optimizer states while maintaining performance

Start with Adam: Destructing Adam's Redundancy

➤ Adam Update Rule:

$$W_{t+1} = W_t - \eta \frac{M_t}{\sqrt{V_t} + \epsilon}$$

where $W_t \in \mathbb{R}^{m \times n}$ is weight matrix, $M_t \in \mathbb{R}^{m \times n}$ is momentum,

 $V_t \in \mathbb{R}^{m \times n}$ is second moment as adaptive learning rate (Preconditioning)

- Question:
 - 1. Is it necessary to maintain an adaptive learning rate for each components in W_t ?
 - 2. If not, how should the **adaptability**(V_t) be arranged?

Adafactor: Adaptive Learning Rates with Sublinear Memory Cost

Noam Shazeer ¹ Mitchell Stern ¹²

¹Google Brain, Mountain View, California, USA ²University of California, Berkeley, California, USA. Correspondence to: Noam Shazeer <noam@google.com>.

Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

Adafactor: Factorize V_t

> Assumption:

$$V_t \in \mathbb{R}^{m \times n}$$
 is **low-rank**, i.e. $V_t \approx R_t \cdot C_t$, where $R_t \in \mathbb{R}^{m \times 1}$, $C_t \in \mathbb{R}^{1 \times n}$

> Motivation:

Decrease the memory of optimizer states by storing R_t & C_t instead of V_t

➤ Memory Saving Results:

$$O(mn) \rightarrow O(m+n)$$

Adafactor: How to derive rank-1 factorization?

Objective: Minimize Generalized KL-Divergence (I-Divergence)

$$D(V \mid\mid RC) = \sum_{i,j} \left(V_{ij} log \frac{V_{ij}}{R_i C_j} - V_{ij} + R_i C_j \right)$$

Constraints:

$$R_i \geq 0$$
, $C_j \geq 0$

Adafactor: How to derive rank-1 factorization?

Theorem

The solution set of the optimization problem (minimizing I-divergence) when consists of all feasible pairs (R, S) satisfying:

$$RC = \frac{V1_m 1_n^\top V}{1_n^\top V 1_m}$$

where $1_{\ell}=(1,\ldots,1)\in\mathbb{R}^{\ell}$ denotes a column vector of ℓ ones.

➤ Solution (Closed-form):

$$R = V \cdot 1_m$$
, $C = \frac{1_n^\mathsf{T} \cdot V}{1_n^\mathsf{T} \cdot V \cdot 1_m}$

Proof of Theorem

$$D(V||RC) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(V_{ij} \log \frac{V_{ij}}{R_i C_j} - V_{ij} + R_i C_j \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} V_{ij} \log V_{ij} - \sum_{i=1}^{n} \sum_{j=1}^{m} V_{ij} \log R_i$$

$$- \sum_{i=1}^{n} \sum_{j=1}^{m} V_{ij} \log C_j - \sum_{i=1}^{n} \sum_{j=1}^{m} V_{ij} + \sum_{i=1}^{n} \sum_{j=1}^{m} R_i C_j$$

Setting the derivatives with respect to R_i and C_i to 0:

$$\frac{\partial \mathcal{L}}{\partial R_i} = -\sum_{j=1}^m \frac{V_{ij}}{R_i} + \sum_{j=1}^m C_j = 0 \quad \Rightarrow \quad R_i = \frac{\sum_{j=1}^m V_{ij}}{\sum_{j=1}^m C_j}$$

$$\frac{\partial \mathcal{L}}{\partial C_j} = -\sum_{i=1}^n \frac{V_{ij}}{C_j} + \sum_{i=1}^n R_i = 0 \quad \Rightarrow \quad C_j = \frac{\sum_{i=1}^n V_{ij}}{\sum_{i=1}^n R_i}$$

Proof of Theorem

The solution has a scaling symmetry $(\alpha R, C/\alpha)$. We break this symmetry by enforcing the constraint $\sum_i R_i = \sum_{i,j} V_{ij}$.

This leads to the canonical minimizer:

$$R_i = \sum_{j=1}^m V_{ij}, \quad C_j = \frac{\sum_{i=1}^n V_{ij}}{\sum_{i=1}^n \sum_{j=1}^m V_{ij}}$$

In vector notation:

$$R = V1_m, \quad C = \frac{1_n^\top V}{1_n^\top V 1_m}$$

Thus, the product *RS* is unique:

$$RC = V1_m \left(\frac{1_n^\top V}{1_n^\top V 1_m} \right) = \frac{V1_m 1_n^\top V}{1_n^\top V 1_m} \qquad \Box$$

Adafactor: Removing Momentum

- Motivation: Further save the memory of momentum Φ
- > Pseudo-code:

Algorithm 2 Adam for a matrix parameter X with factored second moments and first moment decay parameter $\beta_1 = 0$.

- 1: **Inputs:** initial point $X_0 \in \mathbb{R}^{n \times m}$, step sizes $\{\alpha_t\}_{t=1}^T$, second moment decay β_2 , regularization constant ϵ
- 2: Initialize $R_0 = 0$ and $C_0 = 0$
- 3: **for** t = 1 **to** T **do**
- 4: $G_t = \nabla f_t(X_{t-1})$
- 5: $R_t = \beta_2 R_{t-1} + (1 \beta_2)(G_t^2) 1_m$
- 6: $C_t = \beta_2 C_{t-1} + (1 \beta_2) \mathbf{1}_n^{\top} (G_t^2)$
- 7: $\hat{V}_t = (R_t C_t / 1_n^{\top} R_t) / (1 \beta_2^t)$
- 8: $X_t = X_{t-1} \alpha_t G_t / (\sqrt{\hat{V}_t} + \epsilon)$
- 9: end for

Rank-1 Factorization of V_t

Discard Momentum

Summary of Adafactor

> Pros:

Less memory usage of optimizer state: 2mn $(M_t + V_t) \rightarrow m+n (R_t + C_t)$

> Cons:

Approximation Error: V_t is not always of rank 1 \rightarrow Slow convergence **Throughput Cost**: Factorize V_t and compute RMS increase **computation cost**

> Result:

In order to achieve better performance, momentum M_t is **re-introduced** to the actual use of Adafactor, sacrificing memory to gain faster convergence speed.

ADAM-MINI: USE FEWER LEARNING RATES TO GAIN MORE

Yushun Zhang*13, Congliang Chen*13, Ziniu Li¹³, Tian Ding²³, Chenwei Wu⁴, Diederik P. Kingma⁵, Yinyu Ye¹⁶, Zhi-Quan Luo¹³, Ruoyu Sun^{†123}

- ¹ The Chinese University of Hong Kong, Shenzhen, China;
- ² Shenzhen International Center for Industrial and Applied Mathematics;
- ³ Shenzhen Research Institute of Big Data; ⁴ Duke University;
- ⁵ Anthropic; ⁶ Stanford University

Center of Machine Learning Research

Adam-mini: Start from Pre-conditioning Perspective

Critique of Adafactor:

It assumes V_t is rank-1. The assumption lacks **observation** to support.

- → Need to investigate NN's structure!
- ➤ View Adam as Pre-conditioning method:

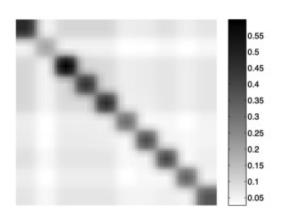
$$w_{t+1} = w_t - \eta_t D_t m_t$$

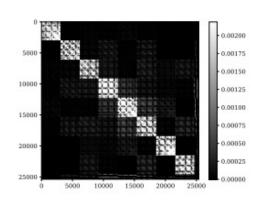
where $D_t = Diag\left(\frac{1}{\sqrt{v_t}}\right)$ is the pre-conditioning matrix

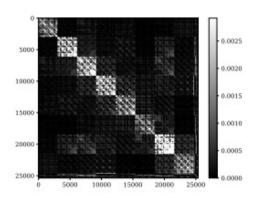
The ideal pre-conditioning matrix is Hessian's inverse H^{-1}

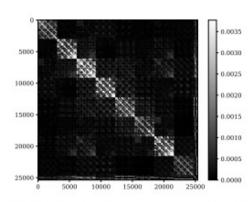
Need to inspect NN's Hessian structure!

Adam-mini: Hessian is near-block-diagonal









(a) Hessian of a MLP (Collobert, 2004)

(b) Hessian of a MLP at initialization

(c) Hessian of a MLP at 50% step

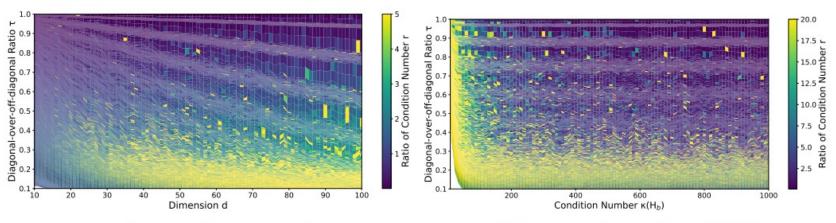
(d) Hessian of a MLP at 100% step

Figure 3: The near-block-diagonal Hessian structure of neural nets. (a) is the Hessian of an MLP after 1 training step reported in (Collobert, 2004). (b,c,d): the Hessians of a 1-hidden-layer MLP on CIFAR-100. The near-block-diagonal structure maintains throughout training, where each block corresponds to one neuron.

Adam-mini: How is Adam's pre-conditioning effect?

 $au = \frac{\sum_{i} |H_{b,i,i}|}{\sum_{i,j} |H_{b,i,j}|}$: the degree of dominance of diagonal elements

$$r = \frac{\kappa(D_{Adam}H_b)}{\kappa(H_b)}$$
: the pre-conditioning effect of Adam



(a) r v.s. dimension d

(b) r v.s. dimension $\kappa(H_b)$

Figure 5: The effectiveness of Adam's preconditioner D_{Adam} on different matrix structures of H_b . (a): for most dimension d, r is large when τ is small (r and τ are defined in Eq. (2)). This indicates that Adam might not be so effective when H_b is dense. We fix $\kappa(H_b) = 500$ here. (b): We use the same setups as (a), except that we fix the dimension d = 50 and change the x-axis to $\kappa(H_b)$.

Adam-mini: Case study of Adam's pre-conditioning effect

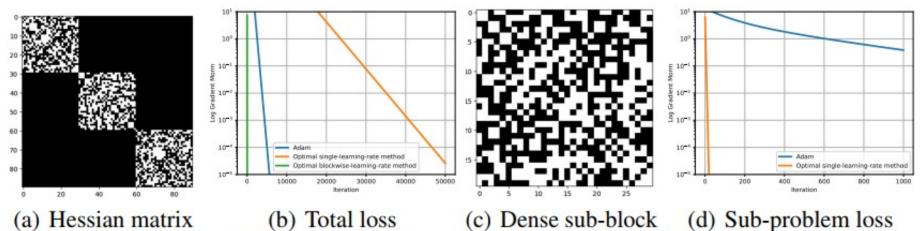


Figure 4: (a): The Hessian of a three-block random quadratic problem. (b): Training curves for the problem associated with the full Hessian in (a). The optimal single (blockwise) learning rate is chosen based on the full (blockwise) Hessian in (a). (c): The 1st dense Hessian sub-blocks in (a). (d): Training curves for the new problem associated with the Hessian in (c).

Conclusion:

- > For dense Hessian case, Adam is far inferior to optimal single-learning-rate.
- For block-diagonal Hessian case, Adam surpasses optimal single-learning-rate

Adam-mini: Observation Summary

- > (Recall) Question:
 - 1. Is it necessary to maintain an adaptive learning rate for each components in W_t ?
 - 2. If not, how should the adaptability (V_t) be arranged?
- **>** For Q1:

Under near-block-diagonal Hessian structure, Adam's maintaining an adaptive learning rate(V_t) for each components in W_t involves redundancy.

➤ For Q2:

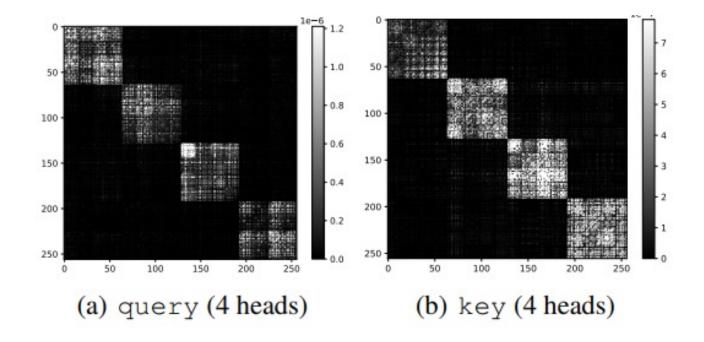
For each dense sub-block of Hessian, carefully chosed single learning rate is good enough.

Adam-mini: Hessian based Transformer Partition Strategy

Use Hessian information to patition variables into groups:

➤ Query/Key: Head-wise

Weight components in the same head as a block.

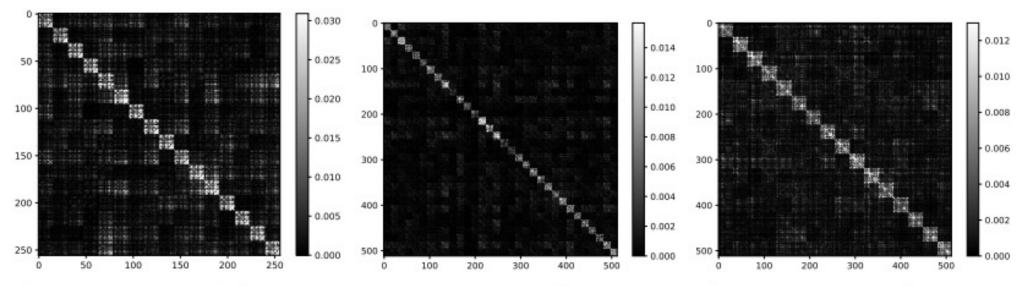


Adam-mini: Hessian based Transformer Partition Strategy

Use Hessian information to patition variables into groups:

> attn.proj/MLP: Neuron-wise

Weight components in the same row as a block



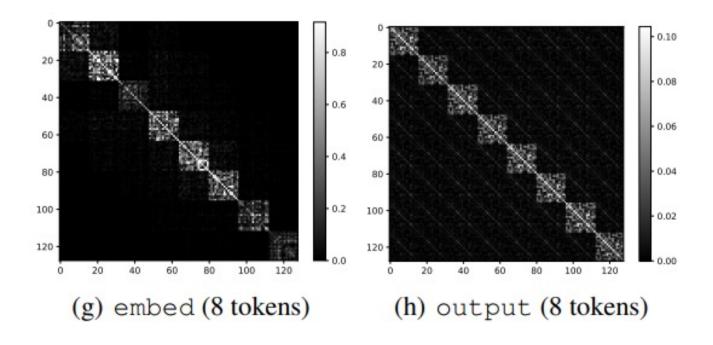
(d) attn.proj (16 neurons) (e) mlp.fc_1 (32 neurons) (f) mlp.proj (16 neurons)

Adam-mini: Hessian based Transformer Partition Strategy

Use Hessian information to patition variables into groups:

> Embedding/Output: Token-wise

Embedding – Each word vector as a block



Adam-mini: How to set learning rate?

- For Adam: $u_{\text{Adam}} = \left(\frac{\eta}{\sqrt{v_1}}, \frac{\eta}{\sqrt{v_2}}, \frac{\eta}{\sqrt{v_3}}, \frac{\eta}{\sqrt{v_4}}, \frac{\eta}{\sqrt{v_5}}\right)$.
- For Adam-mini: suppose the partition is (1, 2, 3) and (4, 5) then

$$u_{\min} = \left(\frac{\eta}{\sqrt{(v_1 + v_2 + v_3)/3}}, \frac{\eta}{\sqrt{(v_1 + v_2 + v_3)/3}}, \frac{\eta}{\sqrt{(v_1 + v_2 + v_3)/3}}, \frac{\eta}{\sqrt{(v_4 + v_5)/2}}, \frac{\eta}{\sqrt{(v_4 + v_5)/2}}\right).$$

- \triangleright Why lr = mean(g \bigcirc g) ?
 - 1. Convenience
 - 2. Best among common statistics

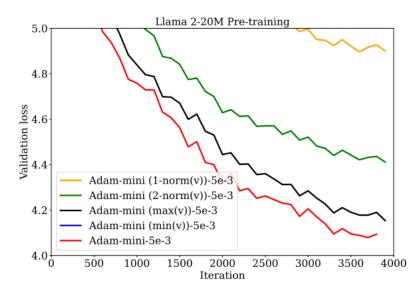


Figure 15: Ablation studies on the design of Adam-mini. We find that mean(v) performs better than other candidates. The blue curve does not show because the algorithm diverges and the curve is out of range.

Adam-mini

Algorithm 1 Adam-mini (General form)

- 1: Input weight-decay coefficient λ and current step t
- 2: Partition params into param_blocks by **Principle 1** in Section 2.3

5: param = param -
$$\eta_t * \lambda *$$
 param

6:
$$m = (1 - \beta_1) * g + \beta_1 * m$$

7:
$$\hat{m} = \frac{m}{1 - \beta_1^t}$$

8:
$$v = (1 - \beta_2) * mean(g \odot g) + \beta_2 * v \implies$$
 Single Ir for a sub-block

9:
$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{1 - \beta_2^t}$$

10: param = param -
$$\eta_t * \frac{\hat{m}}{\sqrt{\hat{v}} + \epsilon}$$

11: **end for**

Partition blocks based on Hessian

Evaluation: Scaling Law



Figure 11: (a, b): Scaling laws of Adam-mini. We pre-train Llama 2 architectures by Chinchilla's law. For all models sized from 39M to 1B, Adam-mini's loss curves are consistently similar to AdamW, but Adam-mini uses 50% less memory. Further, as shown in (b), Adam-mini reaches a lower final loss than AdamW for all models. The fitted lines in (b) suggest that Adam-mini can be scaled up to larger models (if the scaling law holds).

Adam-mini's loss curves closely resembles AdamW's

Adam-mini performs well using the same hyperparameter as AdamW

Evaluation: Memory & Throughput

Table 1: Memory cost of AdamW v.s. Adam-mini. Calculation is based on float32, which is a standard choice for optimizer states.

Model	Optimizer	Memory (GB)
GPT-2-1.5B	AdamW	12.48
GPT-2-1.5B	Adam-mini	6.24 (50 % ↓)
Llama 2-1B	AdamW	8.80
Llama 2-1B	Adam-mini	4.40 (50 % ↓)
Llama 2-7B	AdamW	53.92
Llama 2-7B	Adam-mini	26.96 (50 % ↓)
Llama 3-8B	AdamW	64.24
Llama 3-8B	Adam-mini	$32.12 (50\% \downarrow)$
Llama 2-13B	AdamW	104.16
Llama 2-13B	Adam-mini	52.08 (50 % ↓)

Table 2: Throughput (\uparrow) test on 2× A800-80GB GPUs for Llama 2-7B pre-training. χ means out of memory. GPU hours (\downarrow) to pre-train Llama 2-7B with the optimal token amount by Chinchila's law.

Optimizer	bs_per_GPU		total_bs		Throughput (†)	
Adam-mini	4		256		5572.19 († 49.6 %)	
AdamW	2		256		X	
AdamW	1		256		3725.59	
Optimizer	# Tokens		(B)	GI	PU hours (h) (\lambda)	
AdamW	1			74.56		
Adam-min	i 1			49.85 (↓ 33 . 1 %)		
AdamW		70		52	5219.16	
Adam-min	i	70		3489.55 (↓ 33 . 1 %)		
AdamW		140		10	10438.32	
Adam-min	i	140		6979.10 (↓ 33.1 %)		

Compared to AdamW, Adam-mini saves 50% memory, has 49.6% higher throughput.

Summary of Adam-mini

Efficiency:

- ➤ **Memory**: Less memory usage of optimizer state: $2mn (M_t + V_t) \rightarrow mn (M_t)$
- > Hyperparameter: Performs well using the same hyperparameter as AdamW
- > Computation: Substitute vector operations like sqrt & div by scalar operation

Non-constrained Optimization Problem:

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

> Taylor's Formula:

$$f(\mathbf{x}_k + \mathbf{p}) pprox f(\mathbf{x}_k) +
abla f(\mathbf{x}_k)^ op \mathbf{p} + rac{1}{2} \mathbf{p}^ op \mathbf{H}(\mathbf{x}_k) \mathbf{p}$$

Update Vector:

$$\mathbf{p}_k^{ ext{Newton}} = -\mathbf{H}_k^{-1}
abla f(\mathbf{x}_k)$$

> Advantage of Second-order Methods: Curvature Calibration

Eigen Value Decomposition:

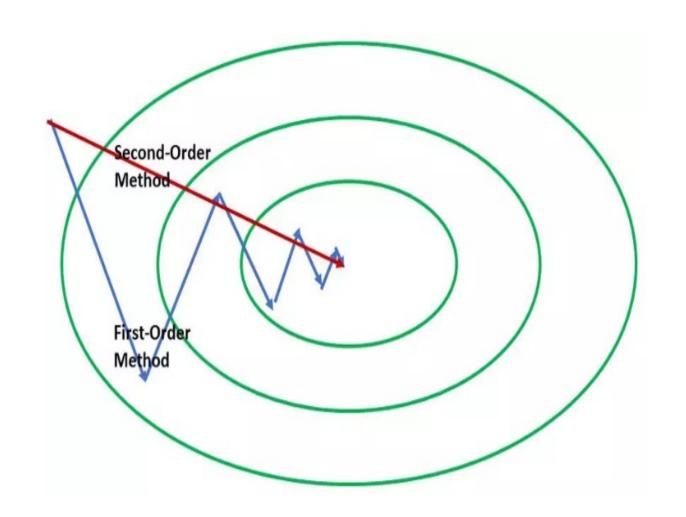
$$\mathbf{H}_k = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{ op}$$

Then we have:

$$\mathbf{p}_k^{ ext{Newton}} = -\mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^ op
abla f(\mathbf{x}_k)$$

In the Eigenspace:

$$ilde{\mathbf{p}} = -\mathbf{\Lambda}^{-1} ilde{
abla} f$$



- ➤ However, it is always hard to get Hessian Matrix
- For Weight matrix $W \in \mathbb{R}^{m \times n}$, the Hessian Matrix is:

$$H \in \mathbb{R}^{mn \times mn}$$

Computational complexity for H^{-1} : $O(m^3n^3)$

For LLM with 1B parameters, the memory cost for Hessian Matrix is:

$$10^{18}$$
 elements \times 8 bytes/element = 8×10^{18} bytes = 10^6TB

The computational complexity for H^{-1} is: $10^{27} FLOP$

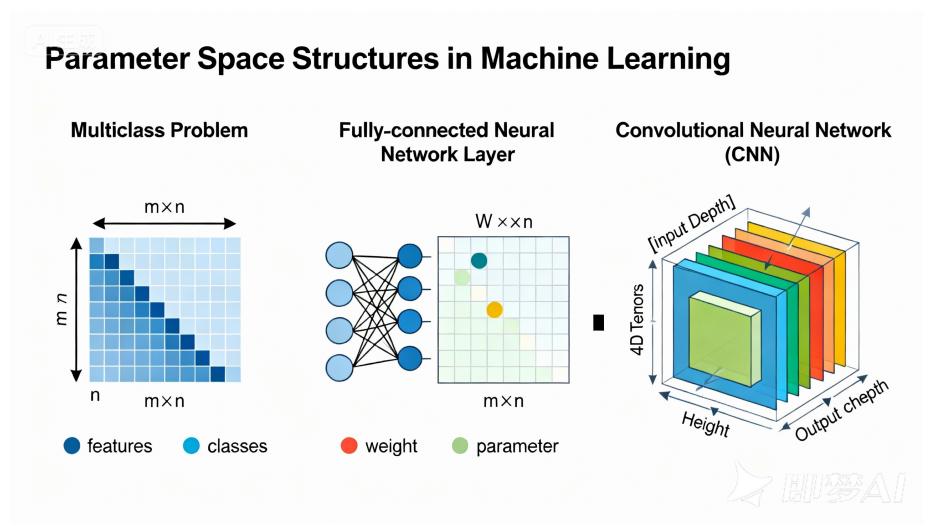
- Can we decompose the Hessian Matrix?
- \succ Kronecker Product: Given two matrices: $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{p \times q}$,

The **Kronecker product** of A and B, denoted $A \otimes B$, is defined as the block matrix:

$$A \otimes B = egin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \ a_{21}B & a_{22}B & \cdots & a_{2n}B \ dots & dots & \ddots & dots \ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

The resulting matrix $A\otimes B$ has dimensions (mp) imes (nq).

➤ Motivation: Exploits the structure of the parameter space



Memory Cost

Computational Cost

Vector-form Second-order Method:

$$\boldsymbol{W_t} = \boldsymbol{W_{t-1}} - \eta_t \boldsymbol{H_t^{-1}} \boldsymbol{G_t}$$

$$O(m^2n^2)$$
 $O(m^3n^3)$

> Shampoo:

$$oldsymbol{L}_t = eta oldsymbol{L}_{t-1} + oldsymbol{G}_t oldsymbol{G}_t^ op$$

$$O(m^2)$$

$$O(m^2n)$$

$$oldsymbol{R}_t = eta oldsymbol{R}_{t-1} + oldsymbol{G}_t^ op oldsymbol{G}_t$$

$$O(n^2)$$

$$O(mn^2)$$

$$oldsymbol{W}_t = oldsymbol{W}_{t-1} - \eta_t oldsymbol{L}_t^{-1/4} oldsymbol{G}_t oldsymbol{R}_t^{-1/4}$$

$$O(m^3 + n^3 + m^2n + mn^2)$$

$$Fpprox \mathbb{E}ig[gg^Tig] \ g = ext{vec}(G) \in \mathbb{R}^{mn} \ ig F = \mathbb{E}ig[gg^Tig] = \mathbb{E}ig[ext{vec}(G) ext{vec}(G)^Tig]$$

$$G = \delta x^T \in \mathbb{R}^{m imes n}$$

利用kronecker乘积的性质

$$F = \mathbb{E}ig[\mathrm{vec}(G) \, \mathrm{vec}(G)^T ig] = \mathbb{E}ig[ig(x x^T ig) \otimes ig(\delta \delta^T ig) ig]$$

认为输入 x 和误差信号 δ 的联合统计可以近似为 "独立"

$$Fpprox \mathbb{E}ig[xx^Tig]\otimes \mathbb{E}ig[\delta\delta^Tig]$$

Center of Machine Learning Research

$$\mathbb{E}ig[GG^Tig]=\mathbb{E}ig[\|x\|^2\delta\delta^Tig]$$
 $\mathbb{E}ig[G^TGig]=\mathbb{E}ig[\|\delta\|^2xx^Tig]$ $\|x\|^2$ 、 $\|\delta\|^2$ 与方向统计可以分离

$$egin{aligned} L_t &= eta L_{t-1} + (1-eta) G_t G_t^T \ R_t &= eta R_{t-1} + (1-eta) G_t^T G_t \end{aligned}$$

Algorithm in matrix case & tensor case

Algorithm 1 Shampoo, matrix case.

Initialize
$$W_1 = \mathbf{0}_{m \times n}$$
; $L_0 = \epsilon I_m$; $R_0 = \epsilon I_n$ for $t = 1, ..., T$ do:

Receive loss function $f_t : \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ Compute gradient $G_t = \nabla f_t(W_t)$ // $G_t \in \mathbb{R}^{m \times n}$ Update preconditioners:

$$L_t = L_{t-1} + G_t G_t^\mathsf{T}$$
$$R_t = R_{t-1} + G_t^\mathsf{T} G_t$$

Update parameters:

$$W_{t+1} = W_t - \eta L_t^{-1/4} G_t R_t^{-1/4}$$

Algorithm 2 Shampoo, general tensor case.

Shampoo

> Experiment Results

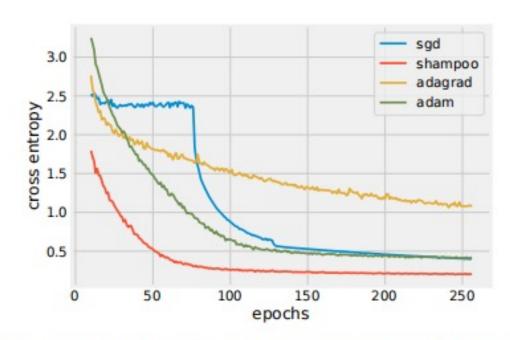


Figure 3. Convergence of training loss for a 55-layer ResNet on CIFAR-100.

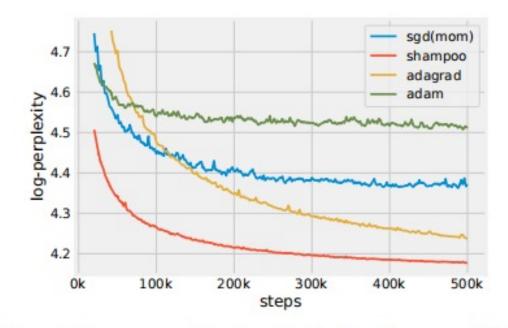
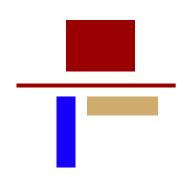


Figure 4. Convergence of test loss for the Transformer model for machine translation (Vaswani et al., 2017) on LM1B.

Essence of Shampoo

Eigen Decomposition:

$$L=Q_L\Lambda_LQ_L^T$$



$$\Lambda_L^{-1/4} \cdot G' \cdot \Lambda_R^{-1/4} = \frac{G'}{\operatorname{diag}\left(\Lambda_L^{\frac{1}{4}}\right) \operatorname{diag}\left(\Lambda_R^{\frac{1}{4}}\right)^T}$$

SOAP

Observation: The variant of Shampoo is equivalent to running Adafactor in the eigenbasis provided by Shampoo's preconditioner

Algorithm 1 Single step of idealized Shampoo with power 1/2.

- 1: Sample batch B_t .
- 2: $G_t \in \mathbb{R}^{m \times n} \leftarrow -\nabla_W \phi_{B_t}(W_t)$
- 3: $L \leftarrow \mathbb{E}_B[G_B G_B^T]$ {Where the expectation is over a random batch B.}
- 4: $R \leftarrow \mathbb{E}_B[G_B^T G_B]$
- 5: $\hat{H} \leftarrow L \otimes R/\text{Trace}(L)$
- 6: $W_t \leftarrow W_{t-1} \eta \hat{H}^{-1/2} G_t = W_{t-1} \eta L^{-1/2} G_t R^{-1/2} / \text{Trace}(L)^{-1/2}$

Algorithm 2 Single step of idealized Adafactor in Shampoo's eigenspace.

- 1: Sample batch B_t .
- 2: $G_t \in \mathbb{R}^{m \times n} \leftarrow -\nabla_W \phi_{B_*}(W_t)$
- 3: $L \leftarrow \mathbb{E}_B[G_BG_B^T]$
- 4: $R \leftarrow \mathbb{E}_B[G_B^T G_B]$
- 5: $Q_L \leftarrow \text{Eigenvectors}(L)$
- 6: $Q_R \leftarrow \text{Eigenvectors}(R)$
- 7: $G'_t \leftarrow Q_L^T G_t Q_R$
- 8: {Idealized version of code for Adafactor taking G'_t to be the gradient}
- 9: $G_B' \leftarrow Q_L^T G_B Q_R$
- 10: $A = \mathbb{E}_B[G'_B \odot G'_B] \mathbf{1}_m$ where $G'_B = Q_L^T G_B Q_R$
- 11: $C = \mathbf{1}_n^{\mathsf{T}} \mathbb{E}_B[G_B' \odot G_B']$
- 12: $\hat{V}_t = \frac{AC^T}{\mathbf{1}_n^T A}$ {Elementwise division}
- 13: $G_t'' \leftarrow \frac{G_t'}{\sqrt{\hat{V}_t + \epsilon}}$ {Elementwise division and square root}
- 14: $G_t''' \leftarrow Q_L G_t'' Q_R^T$ {Projecting back to original space}
- 15: $W_t \leftarrow W_{t-1} \eta G_t'''$

SOAP

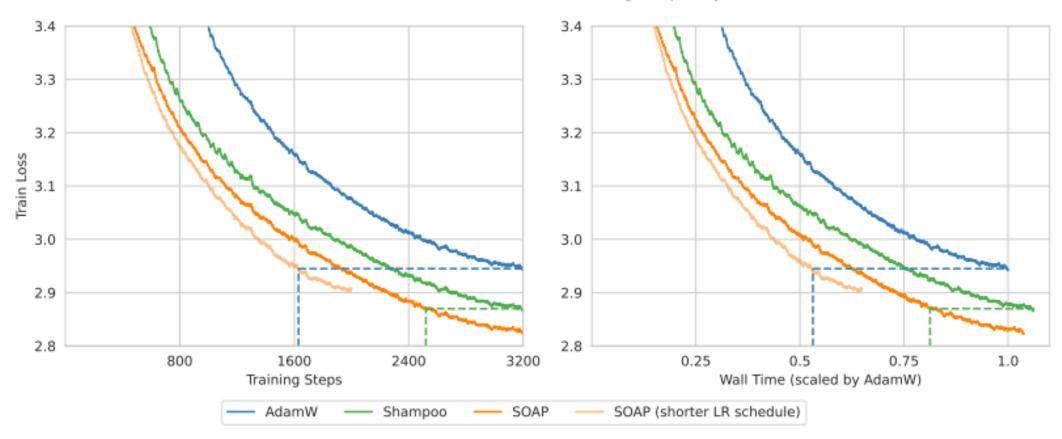
➤ Inspiration: a broader design space for combining first and second order methods——running a first-order method in the eigenbasis provided by a second-order method

Algorithm 3 Single step of SOAP for a $m \times n$ layer. Per layer, we maintain four matrices: $L \in \mathbb{R}^{m \times m}$, $R \in \mathbb{R}^{n \times n}$ and $V, M \in \mathbb{R}^{m \times n}$. For simplicity we ignore the initialization and other boundary effects such as bias correction. Hyperparameters: Learning rate η , betas = (β_1, β_2) , epsilon ϵ , and preconditioning frequency f. An implementation of SOAP is available at https://github.com/nikhilvyas/SOAP/tree/main.

```
1: Sample batch B_t.
 2: G \in \mathbb{R}^{m \times n} \leftarrow -\nabla_W \phi_{B_t}(W_t)
 3: G' \leftarrow Q_L^T G Q_R
 4: M \leftarrow \beta_1 M + (1 - \beta_1)G
 5: M' \leftarrow Q_L^T M Q_R
 6: {Now we "run" Adam on G'}
 7: V \leftarrow \beta_2 V + (1 - \beta_2)(G' \odot G') {Elementwise multiplication}
 8: N' \leftarrow \frac{M'}{\sqrt{\hat{V}_{i,+\epsilon}}} {Elementwise division and square root}
 9: {Now that we have preconditioned by Adam in the rotated space, we go back to the original space.}
10: N \leftarrow Q_L N' Q_R^T
11: W \leftarrow W - \eta N
12: {End of gradient step, we now update L and R and possibly also Q_L and Q_R. }
13: \hat{L} \leftarrow \beta_2 \hat{L} + (1 - \beta_2) GG^T
14: R \leftarrow \beta_2 R + (1 - \beta_2) G^T G
15: if t \% f == 0 then
16: Q_L \leftarrow \text{Eigenvectors}(L, Q_L)
17: Q_R \leftarrow \text{Eigenvectors}(R, Q_R)
18: end if
```

SOAP

> Better robustness, Faster training



Center of Machine Learning Research

Muon: An Orthogonalization-Based Optimizer for Deep Networks

Keller Jordan

Motivation: Limitations of Standard Optimizers

Standard view: parameters in deep learning are a long vector; we use SGD/Adam/AdamW on this vector. But hidden layers are actually matrices.

Empirical issue:

- ➤ Gradients/updates often have highly skewed singular values → poor conditioning
- Many directions updated very weakly → slow learning of rare / subtle patterns
- Question: can we design an optimizer that respects matrix structure and improves conditioning?

Muon Update Rules:

> Outline:

$$G_t \xrightarrow{\mathrm{momentum}} M_t \xrightarrow{-\eta} U_t \xrightarrow{\mathrm{NS ext{-}ortho}} Q_t \xrightarrow{+lpha} W_{t+1}.$$

Details:

Gradient: $G_t = \nabla_W L(W_t)$,

Momentum: $M_t = \beta M_{t-1} + (1-\beta) G_t$,

Raw update: $U_t = -\eta M_t$,

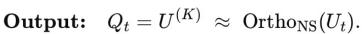
Orthogonalization: $Q_t = \text{Ortho}_{NS}(U_t)$,

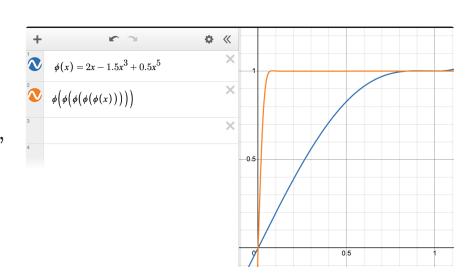
Parameter update: $W_{t+1} = W_t + \alpha Q_t$.

Orthogonalization via K-step Newton-Schulz:

- Newton–Schulz iteration performs a fast and low-cost approximate orthogonalization of the target matrix. (SVD for parameter matrix is expensive.)
- > How it works:

$$\begin{array}{ll} \textbf{Initialization:} & U^{(0)} = \frac{U_t}{\|U_t\|_F}, \\ & \textbf{Iterations:} & U^{(k+1)} = a\,U^{(k)} + b\,U^{(k)}{U^{(k)}}^{\top}U^{(k)} + c\,({U^{(k)}}{U^{(k)}}^{\top})^2U^{(k)}, \\ & k = 0, \ldots, K-1, \end{array}$$





 \rightarrow (a,b,c)=(3.1415,4.7750,2.0315),N=5 for final Muon design.

Why is it good to orthogonalize the update?

> What does orthogonalization in Muon do:

Let $W_t \in \mathbb{R}^{n \times m}$ be the weight matrix at time step t, and G_t be the gradient of the loss function with respect to W_t :

$$G_t = \nabla_W L(W_t)$$

The key idea is to apply an orthogonalization operator to U_t . The polar decomposition of a matrix G is given by:

$$G = QP$$

where Q is a semi-orthogonal matrix and P is a symmetric positive semidefinite matrix. The matrix Q is the nearest orthogonal matrix to G.

$$Q = \arg\min_{O:O^{\top}O = I} \|O - G\|_F$$

where O is any semi-orthogonal matrix. This is equivalent to:

$$Q = G(G^\top G)^{-\frac{1}{2}}$$

Why is it good to orthogonalize the update?

> Properties of orthogonalization:

Proof Orthogonalization forces the **singular values** of \widetilde{U}_t to be equal to 1, which improves the **conditioning** of the update.

Singular values of
$$\widetilde{U}_t$$
: $\sigma_i(\widetilde{U}_t) = 1 \quad \forall i$

> Why is it good to orthogonalize the update?

- ➤ Updates produced by both SGD-momentum and Adam for the 2D parameters in transformer-based neural networks typically are almost **low-rank matrices**, with the updates for all neurons being dominated by just a few directions.
- > Orthogonalization effectively increases the scale of other "rare directions" which have small magnitude in the update but are nevertheless important for learning.

Runtime Analysis of Muon

NS Iteration and Extra FLOPs:

- Before the NS iteration is applied, Muon is just a standard SGD-momentum optimizer, so it has the same memory requirement.
- For each $n \times m$ matrix parameter in the network, each step of the NS iteration requires $2(2nm^2+m^3)$ matmul FLOPs.
- Therefore, the extra FLOPs required by Muon compared to SGD is at most $2T(2nm^2 + m^3)$, where T is the number of NS iterations (typically T = 5).

> Extra computation rate:

- If the parameter parametrizes a linear layer, then the baseline amount of FLOPs used to perform a training step (i.e., a forward and backward pass) is 6nmB, where B is the batch size in tokens.
- Therefore, the FLOP overhead of Muon is at most Tm/B, where m is the model dimension, B is the batch size in tokens, and T is the number of NS iteration steps

Runtime Analysis of Muon

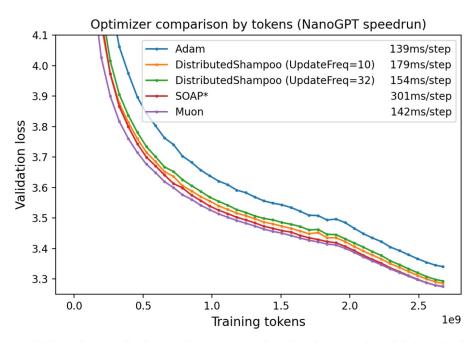
➤ NanoGPT overhead of using Muon:

- For the current NanoGPT speedrunning record, the model dimension is m = 768 and the number of tokens per batch is B = 524288.
- Therefore, the overhead of using Muon is $\frac{5\times768}{524288} = 0.7\%$.

➤ Llama 405B overhead of using Muon:

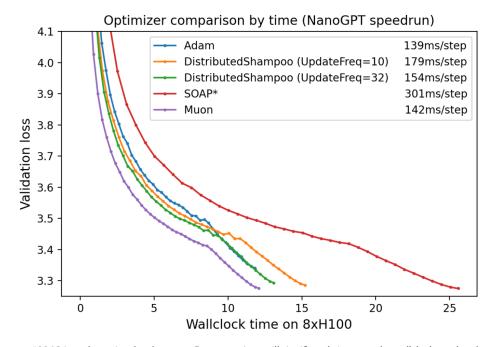
- For Llama 405B training, the model dimension is m = 16384 and the number of tokens per batch is reported to be B = 16000000.
- Therefore, the overhead of using Muon for this training would be $\frac{5 \times 16384}{16000000} \neq 0.5\%$.

Muon Empirical Results (Jordan)



^{*}SOAP is under active development. Future versions will significantly improve the wallclock overhead.

Fig1: Improved the speed record for training to 3.28 val loss on FineWeb (a competitive task known as NanoGPT speedrunning) by a factor of **1.35x**.



^{*}SOAP is under active development. Future versions will significantly improve the wallclock overhead.

Fig2: Optimizer comparison by wallclock time.

Muon Empirical Results (Kimi)

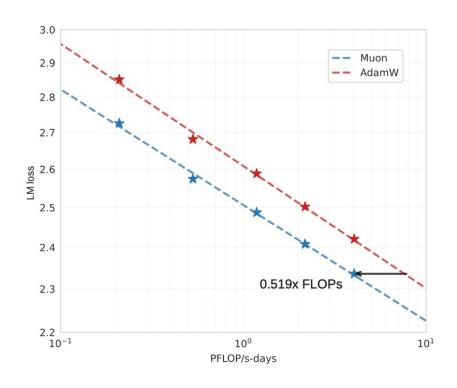


Fig1: Muon uses ~ 52% less computational cost (FLOPs) during training compared to Adam optimizer in **Llama architechture**.

Table 4: Comparison of different models at around 1.2T tokens.

	Benchmark (Metric)	DSV3-Small	Moonlight-A@1.2T	Moonlight@1.2T
	Activated Params [†]	2.24B	2.24B	2.24B
	Total Params [†]	15.29B	15.29B	15.29B
	Training Tokens	1.33T	1.2T	1.2T
	Optimizer	AdamW	AdamW	Muon
English	MMLU	53.3	60.2	60.4
	MMLU-pro	-	26.8	28.1
	BBH	41.4	45.3	43.2
	TriviaQA	-	57.4	58.1
Code	HumanEval	26.8	29.3	37.2
	MBPP	36.8	49.2	52.9
Math	GSM8K	31.4	43.8	45.0
	MATH	10.7	16.1	19.8
	CMath	-	57.8	60.2
Chinese	C-Eval	-	57.2	59.9
	CMMLU	-	58.2	58.8

[†] The reported parameter counts exclude the embedding parameters.

Table4: Moonlight(trained by Muon) performs significantly better than Moonlight-A(trained by AdamW), proving the scaling effectiveness of Muon. We observed that Muon especially excels on **Math and Code** related tasks.

Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training

Hong Liu Zhiyuan Li David Hall Percy Liang Tengyu Ma

Stanford University

{hliu99, zhiyuanli, dlwh, pliang, tengyuma}@cs.stanford.edu

Motivations: Challenges in Large-Scale LLM Training

- > AdamW uses only first-order gradients, while Loss landscape is highly anisotropic.
 - > Some directions: high curvature
 - > Others: flat
- > Uniform step sizes cause:
 - Instability in steep directions
 - Slow progress in flat directions

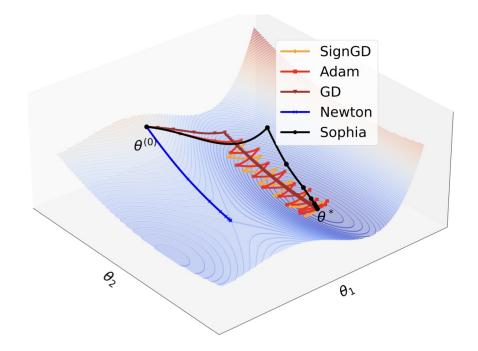


Fig: The motivating toy example. $\theta[1]$ is the sharp dimension and $\theta[2]$ is the flat dimension. GD's learning rate is limited by the sharpness in $\theta[1]$, and makes slow progress along $\theta[2]$. Adam and SignGD bounce along $\theta[1]$ while making slow progress along $\theta[2]$. Vanilla Newton's method converges to a saddle point. Sophia makes fast progress in both dimensions and converges to the minimum with a few steps.

Motivations: Need for Second-Order Information

- > Second-order curvature helps scale updates per coordinate, but Full Hessian is impossible to compute or store.
 - \triangleright Size = O(n²) for n parameters.
 - Inverting or factorizing Hessian is infeasible.
- Goal: Use curvature approximation that is:
 - Informative
 - Cheap
 - Stable and simple like AdamW

Preconditioner Estimation

- ➤ Idea: Use Hessian Diagonal as Preconditioner
- > Approximates curvature per parameter dimension
- > Scales updates as:

$$\Delta heta_i \propto rac{1}{H_{ii}}$$

- ➤ Large curvature → smaller update
- ➤ Small curvature → larger update
- ➤ However, computing the Hessian directly is too expensive, so we use an approximation.

Preconditioner Estimation: Efficient Estimators for Hessian Diagonal

- Option 1: Hutchinson Estimator
 - Uses random vectors v to approximate diag(H)
- Option 2 : Gauss-Newton-Bartlett Estimator
 - Uses gradients/Jacobians instead of Hessian
- Update every k steps, not every step.
- Maintain EMA smoothing for stability.

How to estimate Hessian Diagonal?

> Option 1: Hutchinson Estimator

$$\hat{h} = u \odot (\nabla^2 \ell(\theta) u)$$
$$\mathbb{E}[\hat{h}] = \operatorname{diag}(\nabla^2 \ell(\theta))$$

Algorithm 1 Hutchinson(θ)

- 1: **Input:** parameter θ .
- 2: Compute mini-batch loss $L(\theta)$.
- 3: Draw u from $\mathcal{N}(0, \mathbf{I}_d)$.
- 4: **return** $u \odot \nabla (\langle \nabla L(\theta), u \rangle)$.

> Remark: The H-method only needs to compute the Hessian-vector product, which makes it efficient.

How to estimate Hessian Diagonal?

- ➤ Option 2: Gauss–Newton–Bartlett Estimator
 - The core idea of GNB is to estimate the Hessian diagonal (or, more precisely, the diagonal of its Fisher information) using the **element-wise squared gradient**.

Algorithm 2 Gauss-Newton-Bartlett(θ)

- 1: **Input:** parameter θ .
- 2: Draw a mini-batch of input $\{x_b\}_{b=1}^B$.
- 3: Compute logits on the mini-batch: $\{f(\theta, x_b)\}_{b=1}^B$.
- 4: Sample $\hat{y}_b \sim \operatorname{softmax}(f(\theta, x_b)), \forall b \in [B]$.
- 5: Calculate $\hat{g} = \nabla(1/B \sum \ell(f(\theta, x_b), \hat{y}_b))$.
- 6: **return** $B \cdot \hat{g} \odot \hat{g}$.

GNB: Why Can the Squared Gradient Represent 2nd-Order Curvature?

We consider the log-likelihood:

$$\log p_{ heta}(y \mid x)$$

Negative log-likelihood (NLL):

$$\ell(\theta; x, y) = -\log p_{\theta}(y \mid x)$$

Define the score (the gradient of the log-likelihood) as:

$$s(\theta) = \nabla_{\theta} \log p_{\theta}(y \mid x).$$

Then the gradient of the NLL is:

$$\nabla_{\theta}\ell(\theta; x, y) = -s(\theta).$$

GNB: Why Can the Squared Gradient Represent 2nd-Order Curvature?

Bartlett Identity:

 \blacktriangleright Under mild regularity conditions, the Bartlett identity states that, for data drawn from the model's own distribution (i.e., $y \sim p_{\theta}(\cdot \mid x)$),

$$\mathbb{E}_{y \sim p_{ heta}}[s(heta)] = 0, \qquad \mathbb{E}_{y \sim p_{ heta}}ig[s(heta)s(heta)^{ op}ig] = -\mathbb{E}_{y \sim p_{ heta}}ig[
abla^2_{ heta}\log p_{ heta}(y\mid x)ig]\,.$$

Rewriting in Terms of the NLL:

$$\mathbb{E}_{y \sim p_{ heta}}ig[
abla_{ heta} \ell \,
abla_{ heta} \ell^{ op}ig] = \mathbb{E}_{y \sim p_{ heta}}ig[
abla_{ heta}^2 \ellig]\,.$$

➤ Interpretation: This means when labels are sampled from the model distribution, the expected Hessian equals the expected gradient outer product.

GNB: Why Can the Squared Gradient Represent 2nd-Order Curvature?

> Therefore, a very natural estimator for the Hessian diagonal is:

$$\operatorname{diag}\!\left(
abla_{ heta}^{2}\ell
ight) \;pprox \; \mathbb{E}[\left(
abla_{ heta}\ell
ight)\odot\left(
abla_{ heta}\ell
ight)]\,,$$

where ⊙ denotes element-wise multiplication.

We consider a conditional probabilistic model $p_{\theta}(y \mid x)$, where x is treated as fixed and $\theta \in \mathbb{R}^d$ denotes the model parameters. Define the score function as

$$s(\theta; y, x) := \nabla_{\theta} \log p_{\theta}(y \mid x).$$

All expectations below are taken with respect to $y \sim p_{\theta}(\cdot \mid x)$.

Regularity assumptions. We assume that:

- $p_{\theta}(y \mid x)$ is sufficiently smooth in θ ;
- differentiation and integration (or summation) can be interchanged;
- the support of $p_{\theta}(y \mid x)$ does not depend on θ .

First identity: $E[s(\theta)] = 0$. Since $p_{\theta}(y \mid x)$ is a conditional probability distribution, it satisfies

$$\int p_{\theta}(y \mid x) \, dy = 1.$$

Taking the gradient with respect to θ yields

$$abla_{ heta} \int p_{ heta}(y \mid x) \, dy =
abla_{ heta} 1 = 0.$$

Under the regularity assumptions, we may interchange differentiation and integration:

$$\int \nabla_{\theta} p_{\theta}(y \mid x) \, dy = 0.$$

Using the identity

we obtain

which implies

$$\nabla_{\theta} p_{\theta}(y \mid x) = p_{\theta}(y \mid x) \nabla_{\theta} \log p_{\theta}(y \mid x),$$

$$\int p_{\theta}(y \mid x) s(\theta; y, x) dy = 0,$$

$$E_{y \sim p_{\theta}}[s(\theta; y, x)] = 0.$$

Second identity: $E[s(\theta)s(\theta)^{\top}] = -E[\nabla_{\theta}^{2}\log p_{\theta}]$. We start from the second derivative of the log-likelihood:

$$abla_{ heta} \log p_{ heta}(y \mid x) = rac{
abla_{ heta} p_{ heta}(y \mid x)}{p_{ heta}(y \mid x)}.$$

Taking another derivative with respect to θ gives

$$\nabla_{\theta}^{2} \log p_{\theta}(y \mid x) = \frac{\nabla_{\theta}^{2} p_{\theta}(y \mid x)}{p_{\theta}(y \mid x)} - \frac{\nabla_{\theta} p_{\theta}(y \mid x) \nabla_{\theta} p_{\theta}(y \mid x)^{\top}}{p_{\theta}(y \mid x)^{2}}.$$

Noting that

$$\frac{\nabla_{\theta} p_{\theta}(y \mid x)}{p_{\theta}(y \mid x)} = \nabla_{\theta} \log p_{\theta}(y \mid x) = s(\theta; y, x),$$

we can rewrite the above as

$$abla_{ heta}^2 \log p_{ heta}(y \mid x) = rac{
abla_{ heta}^2 p_{ heta}(y \mid x)}{p_{ heta}(y \mid x)} - s(heta; y, x) s(heta; y, x)^{ op}.$$

Multiplying both sides by $p_{\theta}(y \mid x)$ and integrating over y, we obtain

$$\int p_{\theta}(y\mid x) \, \nabla_{\theta}^2 \log p_{\theta}(y\mid x) \, dy = \int \nabla_{\theta}^2 p_{\theta}(y\mid x) \, dy - \int p_{\theta}(y\mid x) \, s(\theta;y,x) s(\theta;y,x)^\top \, dy.$$

The first term on the right-hand side satisfies

$$\int
abla_{ heta}^2 p_{ heta}(y\mid x)\,dy =
abla_{ heta}^2 \int p_{ heta}(y\mid x)\,dy =
abla_{ heta}^2 1 = 0.$$

Therefore,

$$E_{y \sim p_{\theta}} \left[\nabla_{\theta}^{2} \log p_{\theta}(y \mid x) \right] = -E_{y \sim p_{\theta}} \left[s(\theta; y, x) s(\theta; y, x)^{\top} \right],$$

or equivalently,

$$E_{y \sim p_{\theta}} \left[s(\theta; y, x) s(\theta; y, x)^{\top} \right] = -E_{y \sim p_{\theta}} \left[\nabla_{\theta}^{2} \log p_{\theta}(y \mid x) \right].$$

Negative log-likelihood form. Let $\ell(\theta; y, x) = -\log p_{\theta}(y \mid x)$. Then

$$\nabla_{\theta} \ell = -s(\theta), \qquad \nabla_{\theta}^{2} \ell = -\nabla_{\theta}^{2} \log p_{\theta}.$$

Hence, the Bartlett identity can be written as

$$E[\nabla_{\theta} \ell \nabla_{\theta} \ell^{\top}] = E[\nabla_{\theta}^{2} \ell],$$

which underlies the Gauss-Newton-Bartlett estimator used in second-order optimization methods.

Sophia Update Rule

Algorithm 3 Sophia

- 1: **Input:** θ_1 , learning rate $\{\eta_t\}_{t=1}^T$, hyperparameters $\lambda, \gamma, \beta_1, \beta_2, \epsilon$, and estimator choice Estimator \in {Hutchinson, Gauss-Newton-Bartlett}
- 2: Set $m_0 = 0$, $v_0 = 0$, $h_{1-k} = 0$
- 3: for t = 1 to T do
- 4: Compute minibach loss $L_t(\theta_t)$.
- 5: Compute $g_t = \nabla L_t(\theta_t)$.
- 6: $m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$
- 7: **if** $t \mod k = 1$ **then**
- 8: Compute $\hat{h}_t = \text{Estimator}(\theta_t)$.
- 9: $h_t = \beta_2 h_{t-k} + (1 \beta_2) \hat{h}_t$
- 10: **else**
- 11: $h_t = h_{t-1}$
- 12: $heta_t = heta_t \eta_t \lambda heta_t$ (weight decay)
- 13: $\theta_{t+1} = \theta_t \eta_t \cdot \text{clip}(m_t / \max\{\gamma \cdot h_t, \epsilon\}, 1)$

Adam-like Momentum Term

Sophia Update Rule

> Core Update Formula:

$$heta_{t+1} = heta_t - \eta_t \cdot \mathrm{clip}\left(rac{m_t}{\max(\gamma h_t, \epsilon)}, \, 1
ight)$$

> Notations:

 m_t : EMA of gradients

 h_t : EMA of Hessian diagonal estimate

 γ : curvature scaling factor

 ϵ : numerical stability

> Interpretation:

- Hessian diagonal acts as adaptive step size
- Each coordinate has its own curvature-aware scaling
- ightharpoonup Update stabilizer: $\max(\gamma h_t, \epsilon)$

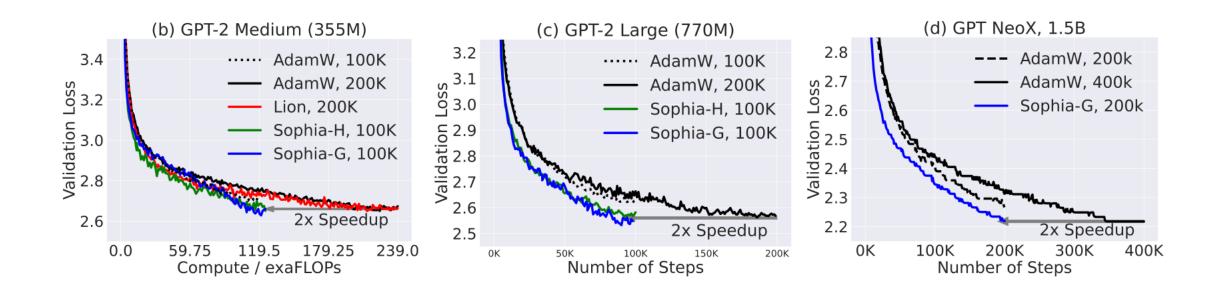
Per-coordinate Clipping

- > Why Needed?
 - Hessian estimates are noisy
 - ➤ High variance may produce excessively large updates
- > Solution: Per-coordinate Clip
 - Bound each coordinate's update:

$$|u_i| \leq 1$$

> In practice: ensures stable training even with imperfect curvature

Experiments



(b) GPT-2 Medium (355M). (c) GPT-2 Large (770M). (d) GPT NeoX 1.5B. Across all model sizes, Sophia achieves a 2x speedup.

Center of Machine Learning Research

Summary

> Sophia is designed to:

- Use informative second-order curvature (diagonal Hessian)
- Maintain very low computation cost
- > Remain **stable** via per-coordinate clipping
- ➤ Achieve faster convergence than AdamW in large-scale models

Key innovation:

> A practical second-order optimizer with LLM-scale compatibility.