;’?(‘ 6441— a t } J '\g
5 59y =
S PEKING UNIVERSITY

Memory-Efficient LLM Training via Implicit Structures

Kun Yuan (= 18)

MELON Group, Peking University

Jan. 8, 2026

Our Group e Z %

PEKING UNIVERSITY

MachinE Learning and OptimizatioN (MELON) Group at Peking University

Machine Learning and Optimization

Center of Machine Learning Research <2>

AETTE]

PEKING UNIVERSITY

PART 00

Background

Scaling Laws for Large Language Models

Qutput
Probabilities

Add & Norm
Feed
Forward
| Add & Norm I::
Add & Norm Multi-Head
Feed Attention
Forward) Nx
 —
Nix Add & Norm
f->| Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
1t 1
S — J _ —)
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Center of Machine Learning Research

Validation loss

Validation loss

LLM Performance vs. Model Size

NIp
LD
S A
< &
A’?

1598

60M parameters

130M parameters

1B parameters

: .
10-0 10

Compute (PF-days)

Line color indicates
number of parameters

108 108 100

Compute-efficient
training stops far
short of convergence

ezt ¥

PEKING UNIVERSITY

LLM
performance
improves as
parameters

gets large

Evaluated across models of different scales

<4 >

Scaling Laws for Large Language Models

[OpenAl, Scaling Laws for Neural Language Models, 2020]

7 4.2
6
3.9
94
® 3.3
P 3
3.0
L = (Cryn/2.3 - 108)0.050
2 : : : . 2.7
10- 10~7 105 10~3 10-! 10!
Compute

PF-days, non-embedding

—— L=(D/5.4-10!3)70.09

straight line on
the log-log plot

5.6
4.8

4.0

3.2

2.4

—— L=(N/8.8-10'3)70076

108 109

Dataset Size
tokens

107 109

Parameters
non-embedding

105

« LLM performance is largely independent of specific architecture

« Performance improves primarily with increases in data, parameters, and compute

 Loss scales as a power law with data, parameters, and compute

Center of Machine Learning Research

<5>

T »
N e 75

PEKING UNIVERSITY

Scaling Laws as a Foundation of ChatGPT’s Success

GPT-2,1.5B parameters, 2019 GPT-3, 175B parameters, 2020
7 6 \ 71011
6 5f. W

|| 1010

2 ' g
3 4 é 10 é
+ g ° 10° &
o % &

= 3 = P

L= (Cmin/2-3 . 108)—0.050 2 '106

fo° 107 10° 102 10! [i0f 15 b—— 5 00

10 10 107 10° 10 10
Compute (PetaFLOP/s-days)

Compute
PF-days, non-embedding

« GPT-2 (2019) scaled far beyond BERT in parameters, yet underperformed in practice
« OpenAl exploited scaling laws to build 175B-param GPT-3, launching the large-model era

« Consensus: Large model + Large data + Large compute = High intelligence

Center of Machine Learning Research <6>

Scaling Laws Drive Rapid Growth in Memory Demand for LLMs

« As data size (D) and parameter count (P) increase, memory usage of large models grows rapidly

* In other words, improving large model performance comes at a significant memory cost

Memory = Model + Gradient + Optimizer States + Activations

=]

Probabilities1:hidden dimensig
Softmax l:layer
N
Linear
O =
Add & Norm
N
32 Feed-Forward
£ 3
20
o1y Add & Norm - X1
g < Masked Multi-
Qo Head Attention
T}
oz
Block
s, h
Add Position (s,)
Embeddings
T (s,h)
s:sequence length Embeddings
. Decoder Inputs (S,V
b:batch size puts (5,7)

Center of Machine Learning Research

Memory for model, gradients, and
optimizer states: 6(lh?) ~0(P)

» Scales linearly with parameters

* more parameters, higher memory cost

Memory for activations:
Q(bslh + bls?a)~Q(D)

« Scales at least linearly with data size
D = bs; more data, higher memory cost

50,257 vocabulary size
2048 context length

(2020) 175B parameters
Trained on 300B tokens

GPT-3

Model Name params Mayers Omodel Theads head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 104
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 104
GPT-3 XL 1.3B 24 2048 24 128 IM 20x 1074
GPT-32.7B 27B 32 2560 32 80 IM 1.6 x 10~
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2x 1074

GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~4

GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 32M 0.6 x 1074

[Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models

al
which we trained. All models were trained for a total of 300 billion tokens.

Training: (rough order of magnitude to have in mind)

= 'O(1,000 - 10,000) V100 GPUs
* O(1) month of training
- O(1-10) $M

<7 >

Scaling Laws Drive Rapid Growth in Memory Demand for LLMs

ezt ¥

PEKING UNIVERSITY

NIp
LD
S A
~ e

< -

o <)
T59%

LLaMA-3 on 20,000 GPUs cluster

To train our largest Llama 3 models, we combined three types of parallelization: data
parallelization, model parallelization, and pipeline parallelization. Our most efficient
implementation achieves a compute utilization of over 400 TFLOPS per GPU when trained
on 16K GPUs simultaneously. We performed training runs on two custom-built 24K GPU
clusters. To maximize GPU uptime, we developed an advanced new training stack that
automates error detection, handling, and maintenance. We also greatly improved our

Training and inference costs
rise sharply

Cost grows

Dramatic memory cost; Massive
clusters for distributed training

Memory grows

2%

Increasing parameters and data

Scaling law

Al computing clusters wille to1 million chips

and there are no physical laws preventing.it...

Growing demand for better XAl built cluster with 100K GPUs Jensen Huang: Al compute
LLM performance

clusters will scale up to 1M chips

Center of Machine Learning Research

Key question: How to save memory?

<8>

Scaling Laws Drive Rapid Growth in Memory Demand for LLMs

Approach 1: Design new architectures and explore
novel scaling laws

Training and inference costs
rise sharply

Approach 2: Develop new hardware (e.g., SuperNodes)
-@®- | Cost scaling to reduce training and inference costs

Approach 3: Memory-efficient training methods driven
by implicit structures inside models

Dramatic memory cost; Massive
clusters for distributed training

‘@' , Insight: As scale increases, LLMs contain significant structural redundancy
A Memory scaling _ o _ S
- Conventional training wastes memory by ignoring implicit structure
. Singular Value of Q Matrix Graident for Layer 10 10
Increasing parameters and data 10y S L0
810t —— Step 50 0.8 08
. g —— Step100 | _
N el —— Step 200 S 0.6 06
'@' Power law 2 LY
- g \ 0.2 |
Growing demand for better ey oo 097
0 20 40 60 80 100 "70.00 0.02 0.04 0.06 0.08
LLM performance Index Residual (Attn O) Magnitude o — 00
Low-Rank Gradients in LLMs Sparse FFN Activations Block-Diagonal Hessian Structure

(low-rank subspace compute & memory)) (sparse masking in compute & memory) (local/global decoupled compute & memory)

Center of Machine Learning Research <9>

Overview

<) »
N e 7) ¥

Goal: Exploit implicit structures for memory-efficient LLM training

1

Low-rank gradients

Develop subspace projection training based on low-rank properties

. (He-Yuan, ICML 2025; Chen-Yuan,
save optimizer states (dense/MoE models) ICML 2025:Chen-Yuan, ICLR 2025)

Sparse FFN layers

Develop importance sampling—based training based on FFN sparsity

(Song-Yuan, ICML 2025; Zhu-Yuan,

save activations (dense/MoE models) NeuriPS 2024:He-Yuan, ICML 2024:)

Cross-layer low-rank
activations

Develop parameter-efficient training based on inter-layer low-rank structure
save model and gradients (dense/MoE models) (Kong-Yuan, 2025; Wu-Yuan, 2025)

Center of Machine Learning Research

PEKING UNIVERSITY

Optimizer
States

Activations

Model and
Gradients

<10 >

NLTEY
- 7 *

PEKING UNIVERSITY

PART 01

Save Optimizer States via Low-Rank Gradient

Y. He, P. Li, Y. Hu, C. Chen, K. Yuan, Subspace Optimization for Large Language Models with
Convergence Guarantees, ICML 2025.

Y. Chen, Y. Zhang, Y. Liu, K. Yuan, Z. Wen, A Memory Efficient Randomized Subspace Optimization
Method for Training Large Language Models, ICML 2025

LLM pretraining is essentially solving stochastic optimization

» The model weights in neural networks are a set of matrices X = {X,}/;_,

(with
e \\dropout)

er“
o=z==9 ,\"1/ “"‘Q -
INPUT nl channels nl channels n2 channels n2 channels ““ E ' 9
(28 x 28 x 1) (24 x 24 x n1) (12x12 x nl) (8x8xn2) (4x4xn2) ‘/ ¢ OUTPUT
n3 units

« Let h(X;¢) be the language model; § = h(X; &) is the predicted token

cross entropy

1
X* = argmin {Egmp [L(h(XQ §); y)} }

ST T

LLM cost function:

data distribution pred. token real token

Center of Machine Learning Research

NI)
LD
=, %
N, o

8 -
> &

I502%

ezt ¥

PEKING UNIVERSITY

<12 >

LLM pretraining is essentially solving stochastic optimization

u‘”ulr »
NIECE R

508 PEKING UNIVERSITY

* If we define € = (§,y) and F(X;€) = L(h(X;¢&),y), the LLM problem becomes
Stochastic optimization: X* = arg n}}n {E§~D [F(X7 g)} }

 In other words, LLM pretraining is essentially solving a stochastic optimization problem

« Adam is the standard approach in LLM pretraining

G, =VF(X&,) (stochastic gradient)

- M= (1—81)M;_1 + B1Gy (first-order momentum)
Optimizer states
Vil=(1—-582)Vi1 4+ BG: © Gy (second-order momentum)
Y
X1 =Xy — oM -
t+1 t IV, e t (adaptive SGD)

Center of Machine Learning Research <13>

Memory cost to pre-train LLMs

ANEZFES]

s PEKING UNIVERSITY

[Memory = Model + Gradient + Optimizer states + Activations]

« Given a model with P parameters, gradient will consume P parameters, and
optimizer states will consume 2P parameters; 4P parameters in total.

3 ICLR 2025 @iclr conf - 8h (oo
<*7P Test of Time Winner

Adam: A Method for Stochastic Optimization
Diederik P. Kingma, Jimmy Ba

Adam revolutionized neural network training, enabling significantly faster
convergence and more stable training across a wide variety of architectures
and tasks.

Q1 114 Q 93 il 4.4K L] -3,

Center of Machine Learning Research

P Gi = VF (X&)
M;=(1-p31)M; 1+ p1Gy

2P { Vi=(1-052)Vi1+ B2G: © Gy

P Xu1=X,— © M,

v
\/Vt—I—E

Optimizer states contribute
significantly to memory usage

<14 >

Memory cost to pre-train LLMs

:éz“ixJ’ >

508 PEKING UNIVERSITY

-

N
Memory = Model + Gradient + Optimizer states + Activations
J
» Activations are auxiliary variables to facilitate the gradient calculations
Consider a linear neural network The gradient is derived as follows
: 8f 8f
f= E(ZzG y) Need to store activations 21, 22, - , 2L,

« The size of activations depends on sequence length and batch size

Center of Machine Learning Research <15>

Minimum memory requirement: GPT-3

e s Y

PEKING UNIVERSITY

« Pretrain GPT-3 model (BF16) from scratch with a single batch size requires

« Parameters: 175B o
Activations

odel
« Model storage: 175B * 2 Bytes = 350 GB

« Gradient storage: 350 GB
« Optimizer states: 700 GB (using Adam)

« Activation storage: ~220 GB
OptStates Gradient

In total: 1620 GB

How to save optimizer states?

Center of Machine Learning Research <16 >

GalLore: Gradient Low-Rank Projection

« Observation: gradient in LLMs becomes low-rank during training 1

2048

Gradient GG,

2048

Log Singular Value

Singular Value of Q Matrix Graident for Layer 10

—e— Step 0
—+— Step 50
—»— Step 100
—— Step 200
—e— Step 210

0 20 40 60 80 100
Index

remain low-rank across iterations

100

Log Singular Value

Singular Value of V Matrix Graident over Step 50

Layer O
Layer 4
Layer 8
Layer 12
Layer 16

Index

remain low-rank across layers

« Given a gradient matrix with dimensions 2048 by 2048, around top 10 eigenvalues dominate

« How to utilize the low-rank structure in gradients?

Center of Machine Learning Research

[11Y. Chen, et. al., Enhancing Zeroth-Order Fine-tuning for Language Models with Low-Rank Structures, ICLR 2025

<17 >

GalLore: Gradient Low-Rank Projection Algorithm

FSSIGN »
NPT TS

PEKING UNIVERSITY

* Main idea: Projecting gradient onto the low-rank subspace (1

 Given gradient G; € R™*™ and projection matrix P, € R™”*", we project high-rank gradient
into low-rank subspace:

Low-rank subspace

Gt c R™MXn PtTGt g = PtTGt c R"X"

Low-rank projection
 When subspace rank r << m, low-rank gradient g+ has much fewer parameters than G,

 In practice, mis 103 ~ 10*, ris 10' ~ 10%; when gradient GG; has a low rank, g+ is a good
gradient estimator

Center of Machine Learning Research [1] J. Zhao, et. al., Galore: Memory-efficient LLM training by gradient low-rank projection, ICML 2024 <18 >

GalLore: Gradient Low-Rank Projection

« Low-rank optimizer states:

g — PtTGt
m; = (1 — B1)my—1 + f19,
v = (1 — Bo)vi—1 + P29, © g,

5t — 7
VA% + €
« Parameter updates:
Xiy1 =Xy — Poy

© My

>

dimsrxn

dimsrxn

dimsrxn

dimsrxn

dims m x n

:‘\\”"‘,,, »
NELF TS

s PEKING UNIVERSITY

Simplified as
X1 =X+ Pip(P] Gy)

 Memory cost: Model X , Gradient G, Projection P, OptStates ™, v and activations

trivial memory cost

Center of Machine Learning Research J. Zhao, et. al., Galore: Memory-efficient LLM training by gradient low-rank projection, ICML 2024 <19 >

éx"\”"e »
NELF TR

PEKING UNIVERSITY

Updating optimizer states via low-rank projected gradients

« Low-rank training: X;,; = X+ Ptp(P;rGt)

« How to achieve the low-rank projection matrix? Singular Value Decomposition!

G, =UxV' -+ P, ={Ul;,:r] |[€ R
|

Select the dominant top-r columns

P(t) (P(t))TG(t)

Projection on Pgt)

:> 600d gr‘adl'eﬂb
estimate

I I
Gradient noise | '
| :

Yutong He, Kun Yuan, et. al., Subspace Optimization for Large Language Models with Convergence Guarantees, ICML 2025

Center of Machine Learning Research <20 >

Updating optimizer states via low-rank projected gradients

NEFES

s PEKING UNIVERSITY

« |tis computationally expensive to perform SVD in each iteration

« Lazy-SVD: perform SVD every t iterations; using the same projector otherwise 1

Low-rank training algorithm based on lazy-SVD (GaLore)

P, < SVD(G;) iftmodT =0
P, + P, 4 otherwise

X1 = Xy +PtP(P;rGt)

* Applying SVD every t steps reduces the computation cost.

[1] J. Zhao, et. al., Galore: Memory-efficient LLM training by gradient low-rank projection, ICML 2024

Center of Machine Learning Research <21>

GalLore: Gradient Low-Rank Projection Algorithm

Pretraining LLaMA on C4 dataset 1]

NP EE

Gios PEKING UNIVERSITY

60M 130M 350M 1B

Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)
GalLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41 (1.08G) 142.53(3.57G)
LoRA 34.99 (0.36G) 33.92(0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
T /dmodel 128 /256 256 /768 256 /1024 51272048
Training Tokens 1.1B 2.2B 6.4B 13.1B

[1] J. Zhao, et. al., Galore: Memory-efficient LLM training by gradient low-rank projection, ICML 2024

Galore achieves significant memory saving with under 0.5% performance loss

Does Galore guarantee convergence to a local minimum or stationary point?

Center of Machine Learning Research

<22 >

(D »
N e 7)

PEKING UNIVERSITY

Galore does not always converge! SVD projection introduces issues

Gét) U Pg(t) (Pe(t))TGét)

Projection on Pg,t)

/' | estimate

Large gradient

Gradient noise

Projection on PY’

Bad gradient
Gradient noise | estimate

Small gradient

When gradient noise dominates the stochastic gradient, SVD captures noise-dominated subspace!

All gradient information is lost !

Center of Machine Learning Research <23 >

Is noise-dominance a common case? Yes! ae;J,?

grad

Gradient dominates
during the initial stages

Noise dominates when
grad approaching the local minimum

Center of Machine Learning Research <24 >

Theoretical flaws of SVD projection: Counterexample construction

()
Counter-Example. We consider the following quadratic problem with gradient noise:
1
F(X) =5 IAX % +(B,X)r, VF(X;§)=Vf(X)+¢&oC, (1)
— (n—r)xn — D 0 NXN 1xr3 (n—r)x(n—r)
where A = (I,—, 0) € R , B = 0 of € R with D € R generated
randomly, C' = (8 })) € R™*", £ is a random variable uniformly sampled from {1,—1} per
iteration, and o is used to control the gradient noise.
\. J

Theorem (Non-convergence of GaLore): There exists an objective func-
tion f : R — R satisfying Assumptions 1 and 2, a stochastic gradient oracle
(F, D) satisfying Assumption 3, an initial point £(®) € R¢, and a constant ey > 0
such that for any rank r;, < min{my,ns}, subspace changing frequency 7, any
optimizer p that inputs a subspace gradient of shape r, x n, and outputs a
subspace update direction of the same shape, and for any ¢ > 0, it holds that

IVF(®)]3 2 eo.

[1] Yutong He, Kun Yuan et al., Subspace Optimization for Large Language Models with Convergence
Guarantees, ICML 2025

Algorithms using AdamW

0 == GalLore
=4f=="Full Params.

) 200 400 600 800 1000
Iterations

GalLore does NOT converge
to desired solutions

<25>

GolLore: Subspace training based on random projection

5ot PEKING UNIVERSITY

Gradient random Low-rank projection (GoLore) randomly projects the gradient via

Pt ~/ U(Stm,r)

Lemma 5 (Error of GoLore’s projection). Let P ~ U(St

mr), Q ~ U(Stnr), it holds for all
G € R™*™ that
ElPPT)= . I.| EQQ"] =" -1
m n
and
T o T T
. EIPPTG -Gl = (1- 2)lGI3 ENCRQT -GlF = (1- 1) IGI3-)

r
E[PP'G] =E[PP']-E[G] = —VF(X)
m
The low-rank randomized projected gradient is an unbiased estimate of the true gradient

Center of Machine Learning Research

<26 >

NP

508 PEKING UNIVERSITY

GolLore’s theoretical convergence guarantee

Theorem (Convergence rate of GoLore): Under Assumptions 1-3, for any
T > 2+ 128/(39) + (1280)%/(9+/dLA), GoLore using small-batch stochastic
gradients and MSGD with MP converges as

T—1
1 — LA LAc?
T tz_; E [HVf(:z:())Hz} =0 <§5/2T ™ §7/2T ;

where A = f(2(®)) —inf, f(x) and § := min, min{;fze e

« Golore is guaranteed to converge at a rate of O(1/VT).

- Adam converges at O(1/v/T), implying low-rank projection keeps the convergence order

Center of Machine Learning Research < 27>

A hybrid strategy: random projection + SVD

éx‘\”"f» »
NELF TR

« SVD projection is preferred in initial stages: effectively capture gradient information

« Random projection is preferred when approaching solutions: avoid losing gradient information

GoLore@x% = Galore (first (100-x)% iters) + GoLore (last x% iters)

Algorithms using MSGD

0 =@= GolLore@75%
== L.B. GalLore
== Galore
==f§==Full Params.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

Center of Machine Learning Research

Algorithms using AdamW

=@= GoLore@50%
== L.B. GalLore
=== Galore
=f=Full Params.

200 400 600 800 1000

Iterations

3.00
2.75
2.50
2.251

§ 2.00-

Z 1.751
1.50
1.251

1.00

Gradient Error Norms

—— GolLore@75%
—— Galore

0 250 500 750 1000 1250 1500 1750 2000
Iterations

<28 >

PEKING UNIVERSITY

Experimental results on fine-tuning

éx"\”"e »
N e 7)

PEKING UNIVERSITY

Pre-train LLaM2-60M on C4 Fine-tuning LLaMA2-7B on WinoGrande:

Algorithms using AdamW

80 2.50
—8— GolLore@50% —8— GoLore@20%
75 SaloE £:45° —#— Galore
2.00 =& Full Params.
70 - .
& 1.751
-'s 65 44.5 ' 0.9 |
n
9 44.0 8 1.50- §
Q. 601 43.5- - 0.8 1‘
o .0- 1.251 e
a 55 43.0 |
42.5 T T T 0.7 ! , |
- 20.0 25.0 30.0 1.00 5 4.0 l|
a5
: : : 0.50 : : : ;
0.0 10.0 20.0 30.0 0.0 1.0 2.-0 3.0 4.0
Iterations(x1000) Iterations(x1000)

Center of Machine Learning Research

<29 >

LR »
NEF T

508 PEKING UNIVERSITY

Experimental results on fine-tuning

* Fine-tuning RoBERTa-Base on the GLUE benchmark:

Algorithm CoLA STS-B MRPC RTE SST2 MNLI OQNLI QQP Avg
Full Params. 62.07 90.18 9225 78.34 9438 8759 9246 9190 | 86.15

Gal ore 61.32 90.24 9255 77.62 94.61 8692 9206 90.84 | 85.77
GoLore@20% | 61.66 90.55 9293 78.34 94.61 87.02 92.20 9091 | 86.03

« GolLore shows superior performance than GalLore in the above experiments.

Center of Machine Learning Research <30>

Experimental results on pretraining benchmark

508 PEKING UNIVERSITY

LLaMA Pretrain
Algorithm 60M 130M 350M 1B
Adam* 34.06 (0.22G) 25.08 (0.50G) 18.80(1.37G) 15.56 (4.99G)
GaLore* 34.88 (0.14G) 25.36 (0.27G) 18.95(0.49G) 15.64 (1.46G)
LoRA¥* 34.99 (0.16G) 33.92 (0.35G) 25.58 (0.69G) 19.21 (2.27G)
ReLoRA* 37.04 (0.16G) 29.37 (0.35G) 29.08 (0.69G) 18.33 (2.27G
RSO/GoLore 34.55(0.14G) 25.34 (0.27G) 18.86 (0.49G) 15.68 (1.46G)
g {7 MY 128 /256 256 /768 256/ 1024 512 /2048
Training Tokens (B) 1.1 2.2 6.4 13.1

PPL degrades 0.77% Optimizer states saved 70.7%

[1] Yiming Chen, Kun Yuan et al., A Memory Efficient Randomized Subspace Optimization Method For Training Large Language Models, ICML 2025

Center of Machine Learning Research <31>

Summary

LLM memory: parameters, gradients, optimizer states, activations

« LLM gradients exhibit significant low-rank structures

2048

Gradient G;

2048

« Core idea: Use low-rank gradients to compute optimizer states, saving memory

 Random Stiefel manifold projection overcomes the bias in SVD projection

« Benefits: <1% performance loss, saves ~70% optimizer memory.

Gt c R™MXn PtTGt g = PtTGt c R7TX"

Gradient projection

Center of Machine Learning Research

NELF PR

PEKING UNIVERSITY

10

—— Step 0
Step 50
—=— Step 100
—— Step 200
—— Step 210

._.
S

-
o
1]

Log Singular Value
s g

H
3

0 20 40 60 80 100
Index

Low-rankness maintained across steps

subspace

<32>

ST »
ANTLEES

PEKING UNIVERSITY

PART 02

Save Activation via Sparse FFN

T. Wu, Y. He, B. Wang and K. Yuan, Mixture-of-Channels: Exploiting Sparse FFNs for Efficient LLMs Pre-Training and Inference,
arXiv:2511.09323, 2025

LLM activation memory

LLM Memory= Param. + Grad. + Opt. State + Activation

LLaMA-2’s memory (context-length 256)

) 504 A100 40G Capacity

7| o e Activations are auxiliary variables stored

L a0 Optimizer State o for gradient computation.

8 Activation

2 30,

o Activation memory is proportional to

£ 20 batch size.

=

o 10 -

45' [1]T. Wu, Y. .H.e, B. Wang and K: _(uan, Mixture—of-Chanpels: Exploiting Sparse

= 0 _- - - - - -_ FFNs for Efficient LLMs Pre-Training and Inference, arXiv:2511.09323, 2025
4 8 16 32 64 MoC/64

Training Batch Size

Center of Machine Learning Research <34 >

LLM activation memory

(D »
NETES

PEKING UNIVERSITY

LLM Memory= Param. + Grad. + Opt. State+ Activation

GPT3-175B

Activations

odel When batch size is large, activation

memory increases sharply and dominates

Activation memory saving is more critical
in large-batch scenarios

Gradient : :
OptStates This section explores how to save

batchsize = 1 batchsize = 128 activation memory

Center of Machine Learning Research <35>

Activation memory breakdown

(Softmax)
'L Linear]
Add)
(RMSNorm)
A

|
e Add
(Multi-Head
L Attention

L RMSNorm)

-k Positional
Encoding

[Input 1

Batch size: b
Context length: s
Hidden dimension: d

Center of Machine Learning Research

ANEZFES]

508 PEKING UNIVERSITY

4)
Multi-Head Self-Attention (MHSA): for head i, requires:

Q; = XWé € RSth, K, = XW}(c RSth’ V, = XW‘Z/ c RSXdn
A; = FlashAttention(Q;, K;, V;) € R¥*%
A=[Ay;- ;A € R4 0= AW, € R**

Storing Q,K,V,A,0(5sd); 5bsd parameters in total for batch size b
. J

4)

SwiGLU FFN: requires computing

G = XWgate € R4 U = XW,,, € R¥* %o
S =SiLU(G) e R¥*Um Z = SO U € R¥>*%n D = ZWagwn € R¥XY,

Storing G, U, S, Z, D with b(d + 4dgs,)s parameters (where d¢,= gd)

_ J
<36 >

<) »
N e 7) ¥

PEKING UNIVERSITY

Activation memory breakdown

« Activation memory: FlashAttention (FA) + FFN + RMSNorm + Residual

Layer Activation = Attention 5bsd + FFN 11.67bsd + RMSNorm 2bsd + Residual 2bsd

oftmax L .. 11.67/5 =2.33
Sular Activation profiling
“ LLaMA LLaMA FFN activations are
(350M) (1.3B) 2 314 times of FA's
RMSNorm
s Per- Attention 177TM 336M
i Add e Layer FFN 400M 791M (18.54G) . o _
Multi-Head (x24) Others 68M 134M Saving FFN activations is
Attention .
—r— LLM head 216G 2.16G key to memory reduction

i E e P Total 17.64G 32.4G
Encoding

Input

Tong Wu, Kun Yuan, et. al. Mixture-of-Channels: Exploiting Sparse FFNs for Efficient LLMs Pre-Training and Inference, arXiv:2511.09323, 2025

Center of Machine Learning Research <37>

SwiGLU

« SwiGLU is widely used in large-model FFNs, e.g., LLaMA-2/3, Qwen2.

4)
FFN. For each input X € R**? to the FFN module, we first

compute and store:
G = XWgate € RP¥U U = XW,,,, € R¥* %,

where Wgate, Wup € R9¥dtin are the weights corresponding to the
gating and up-sampling branches in the SwiGLU activation.

S = SiLU(G) € R#*dm
7 =S oU ¢ R¥*dim
D = ZWiown € R¥¥?,

where Waown € R%*=%? is the down-sampling weight.

G) »
N e 7) ¥

D

PEKING UNIVERSITY

Down Projection

FeedForward I] II

X SiLvu

- A >,
dim x factor wd' n

—> O <

e P

UP Projection

YJ

dim x factor

_ J

Center of Machine Learning Research

i

X

The structure of LLM’s FFN: SwiGLU

NELF TR

PEKING UNIVERSITY

Tong Wu, Kun Yuan, et. al. Mixture-of-Channels: Exploiting Sparse FFNs for Efficient LLMs Pre-Training and Inference, arXiv:2511.09323, 2025

GPT-2 124M GELU Activation of 128 channels in Layer 6
0

SiLU / Swish Activation Function []
101 . , I [- 2.5
— SIiLU (SWISh) 20
8 xl - 2.0
SiLU(z) = : 40
1 + exp(—z) x
% 6 :
= S 60
2 3
a4 H
£ 80
24
100
0

120

-10.0-7.5-5.0-2.5 0.0 2.5 5.0 7.5 10.0
X 0 20 40 60 80 100 120
Channel index

« When x > 0, SiLU produces strong activations;
_ _ , >70% are negative or near 0 in each row
« When x < 0, SiLU suppresses the input signal;

Center of Machine Learning Research

The structure of LLM’s FFN: SwiGLU

~70% inputs of
SiLU are below 0

~70% outputs of SiLU
are suppressed, only

10°

> 10*

nc

o 103

Frequ
[
%

10!

10°

(o8

the remaining 30% are O 10’

activated

Center of Machin

10!

10°

[Outside Top-30%
0 Wwithin Top-30%

|

-1 0 1 2
SiLU Activation Inputs

(a) LLaMA-2 Layer 0.

_ == Top-30% threshold: 0.03 [V.

o
[N}

[Outside Top-30%
0 within Top-30%

fl [l

= = Top-30% threshold: 0.01 [V.

o
[N}

0 1 2
SiLU Activation Values

(d) LLaMA-2 Layer 0.

=] (=} =
. m m-
Cumulative Density

o
>

=

o
Y

o
(o))
Cumulative Density

o
>

o

o
o

o
S
Cumulative Density

o
[N}

10°4
> 10%
g = = Top-30% threshold: 0.03 [
g 103, 1 Outside Top-30%
o 30 within Top-30%
0 10?4
[
101;
1091] , |
-1 1 2 3 4
SiLU Activation Inputs
(b) LLaMA-2 Layer 16.
T
10°{ |
>
g = = Top-30% threshold: 0.01
g 104 [J Outside Top-30%
o 30 within Top-30%
Q
& 103
102 a i
0 1 2 3 4
SiLU Activation Values
(e) LLaMA-2 Layer 16.

[

o
o

o

© o o o ~
N b_ [¢)] CO_
Cumulative Density

o

U NI
TSI
§ Q%
<)
o <)
J

ez XY

508 PEKING UNIVERSITY

10°

Frequency
= = =
o o o

N }A’ =y

=
o
-

[
o
o

Outside Top-30%
| Within Top-30%

{ it bt

| == Top-30% threshold: 0.01 [

o
[N}

= = =
o o o
w » w

Frequency
[o=}
R

10!

5-4-32-1012345
SiLU Activation Inputs

(c) LLaMA-2 Layer 31.

e o =
o o™

o
s
Cumulative Density

o

[Outside Top-30%
0 Within Top-30%

IIH[I[[]D [I:Il]

= = Top-30% threshold: 0.00 [

°© o o »
«b_ (o)) CO_
Cumulative Density

o
[N}

o

o 1 2 3 4 5
SiLU Activation Values

(f) LLaMA-2 Layer 31.

New FFN structure based on sparsity: Mixture of Channels

r

- ()
New FFN structure based on sparsity: Mixture of Channels
Core idea: for every input token
. y np ' MoC. For each input X € R**? to the FFN module, we first
adaptively select Top-K channels)
compute and store:
ﬁ G = XWgate c RSdefn7 U = XWup c RSdefn7
N where Wgate, Wup € RIXdem gre the weights corresponding to the
Traditional FEN structure: SwiGLU gating and up-sampling branches in the SwiGLU activation.
FFN. For each input X € R**?¢ to the FFN module, we first Qs !
compute and store: S = SILU(G)’ S =45 © M’
/ /
G = XWgae € R¥U U = XW,,, € R* e Z=50U,
/
where Wate, Wyp € R4*¥ditm are the weights corresponding to the D — Z WdOWD?
gating and up-sampling branches in the SwiGLU activation.
S = SILU(G) € Re¥dim where Wiown is the down-sampling weight, and M is defined as
Z=S80oU R
D = ZWagwn € R¥¥C, Y 1, if G4; is among the top-K largest values in row ¢ of G,
ij = .
where Wyown € R% %4 is the down-sampling weight. 07 otherwise.
J _)

\.

<) »
N e 7) ¥

PEKING UNIVERSITY

Since only part of the channels are activated, we call it a Mixture of Channels (MoC) model.

L »
NELF TR

PEKING UNIVERSITY

Mixture of Channels (MoC) model

« Schematic of the MoC architecture (typically selecting the top 20% of channels).

Mo — {1, if G;; is among the top-K largest values in row i of G,
& =

0, otherwise.
G=X Wgatea

TopK | L, T 1 t s J
B
— Wl

wgare

|) S’=S®M’
v'r—v':ga, ‘‘‘‘‘‘‘
5 Z'=80U,
e — =
U=XW,, Z'

@ Element-wise Product [)Saved Activations [] Discarded Activations | | Recomputed Activations

Center of Machine Learning Research <42 >

Efficient training of Mixture of Channels models

NEFEE

508 PEKING UNIVERSITY

MoC'’s forward pass MoC’s backward pass
N 4 - T N
G = XWate, U=XW,p. VWaown = (Z,) Vb, Vz = VDWigwn,
pr— .] T 4 (= ’
M = TopK(G) Vg =(UOM)oVz, Vy =870 Vg, |
Vs =Vgs, Ve = Vs @ (VSILU)(G),
S =SiLU(G), S§'=SoM, . .
Viw,.. =X Vg, Vw,, =X Vy,
Z'=50U, D=ZWiown Vx = VGWgTz;te + VUWJ;), Sparse storage
J \ J

« Store sparse activationsZ' =ZOM, U ' =UOMandS'=SOM
« SinceVs' =VS=U®cMeVZ, VSILU operates coordinate-wise, only G' = G O M is stored
* |In contrast, traditional FFN architectures require storing dense matrices Z,U, S, G

Center of Machine Learning Research <43 >

Efficient training of Mixture of Channels models ;h:;),?

MoC'’s activation computation

MoC MoC+GCP FFN FFN+GCP

GoOM GoOM G G
Stored UoM UoM U U
Activati SOM - S -
ctivations Z0M B 7 B
M and D M and D D D

Memory bsdg, + bsd 0.6bsdg, + bsd 4bsdg, + bsd 2bsdg, + bsd

Cost (3.67bsd) (2.6bsd) (11.67bsd) (6.33bsd)
MoC only stores sparse activations « S and Z can be easily recomputed

instead of being stored
MoC saves ~68% activation memory

Center of Machine Learning Research <44 >

MoC system-level operator optimization and memory savings

G) »
N A 75 F

PEKING UNIVERSITY

« Unstructured sparsity does not reduce computation, and top-K introduces extra overhead

« With optimization using RAFT and Triton, MoC

MoC does not introduce significant overall computational overhead

: : : : Standard MoC using
achieves FFN-equivalent computation time FFN (ms) °Ptimized
kernels (ms)
o . : ' Forward 20.2 21.1
2:8 .structured sparse operators can achieve computational Rackwand "y o~
Savings. Total 41.8 43.9
Pretrain LLaMA on C4
60M 130M 350M 1B
FFN-based LLM + AdamW 30.44 (38.3G) 23.92 (54.1G) 18.26 (52.5G) 15.56 (56.6G)
GaLore 34.88 (38.1G) 25.36 (53.9G) 18.95 (51.7G) 15.64 (52.5G) With only a 0.4% loss increase,
MoC W59 (2180) 2402(417G) 1857 046) 1ss0(aog) ~CCio-end total memoryis
(0] o . n 0
MoCa.s 31.02(22.1G) 24.12 (42.3G) 18.68(36.4G) 15.62 (42.7G) reduced by 24.6%
, (all memory accounted for).
batch size per GPU 256 256 128
K /dmodel 128 /256 384 /768 51271024 1024 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Center of Machine Learning Research

<45 >

Extending MoC to other LLM architectures

Compatibility of MoC with MoE architecture

160M S30M
Vanilla Mixtral 23.77 (48.3G) 18.65 (41.7G)
Mixtral+MoC 24.44 (38.2G) 18.88 (30.0G)
batch size per GPU 256 128
K /dmodel 256 /512 512/1024

Compatibility of MoC with Qwen architecture

Model Ppl.

Qwen3-300M 18.52
Qwen3-300M+MoC 18.59

Center of Machine Learning Research

NEF P

508 PEKING UNIVERSITY

Compatibility of MoC with GQA architecture

Model Structure Ppl. Memory
LLaMA-130M GQA 24.02 53.9G
LLaMA-130M GQA+MoC 24.26 34.4G
LLaMA-350M GQA 18.51 52.9G

LLaMA-350M GQA+MoC 18.69 36.9G

Compatibility of MoC with LLaMA-7B

Model Ppl.

LLaMA-7B 26.14
LLaMA-7TB+MoC 26.47

<46 >

Summary

 In LLM memory, activations dominate; within activations, FFN
memory usage is dominant

 FFN: SiLU activation is sparse; most channels suppressed

N w H [
o o o o

Total Memory Usage (GB)
)

o

A100 40G Capacity
1 = weight

Gradient
Optimizer State
Activation

4 8

16

32

64 MoC/64

Training Batch Size

« Leveraging SiLU sparsity, we design MoC to save memory and speed up inference

« Benefits: <1% performance loss, saves ~68% activation memory, ~25% total memory, >10%

faster inference.

Frequency

HF

|

0
10°{ mmm

I

~ Top-30% threshold: 0.01
1 Outside Top-30%
] Within Top-30%

.

o
®

54321012 345
SiLU Activation Inputs

Center of Machine Learning Research

=

© o o
N -b.)] .
Cumulative Density

o

1, if G;; is among the top-K largest values in row i of G,

M= {0‘ otherwise.

® Element-wise Product [)Saved Activations [] Discarded Activations

EatRER () coren
@m:u;'-
[

| Recomputed Activations

<49 >

NET TR

PEKING UNIVERSITY

PART 03

Save Model and Gradient via Cross-Layer Structure

Boao Kong, Junzhu Liang, Yuxi Liu, Renjia Deng, Kun Yuan, “CR-Net: Scaling Parameter-Efficient Training with
Cross-Layer Low-Rank Structure”, arXiv:2509.18993, 2025

T »
ANETEE]

PEKING UNIVERSITY

Memory overhead in LLMs pre-training

[Memory = Parameter + Gradient + Optimizer states + Activation]

« Low-rank projection only saves the « Sparse activation in MoC onlys saves the
memory of Optimizer states memory of Activation
G/ :3&;222 @ T ,,_ | M = TopK(G)
r:},_g_l S = SiLU(G),
P, G, - @t B i B [S'=SoM,
Xt—|—1 = X+ PtP(Pt Gt) *@Wm S feEF Z'=8oU,
(%) Element-wise Product ([)Saved Activations (] Discarded Activations [) Recomputed Activations

« How to save the Parameter and Gradient? Parameter-efficient Methods!

« Parameter-efficient methods can save the memory of parameter, gradient, and optimizer states

at the same time.

Center of Machine Learning Research

<51>

Bottleneck of LORA in LLMs pre-training

U NI
TSI
§ Q%
<)
< -
o <)

I598%

ez XY

PEKING UNIVERSITY

« Although LoRA enables fine-tuning of LLMs with fewer parameters, it is not applicable in pre-training.

min Eep | F(W5€)] (loss function for pre-training)
W eRPXq
min Eep|F(W 4+ AB; €)] (loss function for LORA)
AERPXT,BERTX q
h | Pre-trian LLaMA on C4

A Aar S N 60M 130M 350M 1B
cthoas Perplexity =~ Memory | Perplexity Memory | Perplexity Memory | Perplexity Memory
. AdamW* | 3406 0.36G 25.08 0.76G | 1880 2.06G 1556 7.80G
U pd ate A, B ALl Low-Rank* 78.18 0.26G 4551 0.54G 37.41 1.08G 142.53 3.57G
’ Weights LoRA* 34.99 0.36G 33.92 0.80G 25.58 1.76G 19.21 6.17G

Fix X

Center of Machine Learning Research

« The pre-training PPL of LoRA increases significantly.

« Calls for an effective algorithm for pre-training.

<52 >

Low-Rank Activation Residuals Between Adjacent Layers in LLMs

G ™\ »
N e 7) ¥

PEKING UNIVERSITY

« Parameters lack low-rank structure; low-rank approximation fails

Q, = XWEP ~ XA°BC x
T T7T TT

Activation Input Parameter Low-rank parameter

« Core idea: Compensate approximation error using previous layer‘s activationsy1

Qi=XWR~Q, 1+XA%B% S/
T T

Activation Activation in
in layer [layer [-1

In other words, adjacent-layer activation residuals (), — 0,1 exhibit low-rank structure

[1] Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, arXiv:2509.18993, 2025

Center of Machine Learning Research <53 >

Low-Rank Activation Residuals Between Adjacent Layers in LLMs INEIF LS

Q.= XW? ~ XAYB°
XW/ ~ Q1+ XA?BY

Relative Error of Activation Recovery for LLaMA-3 8B (Ratio: 0.25)

Effective Rank of Activation Q 14

I Full Rank
Il Effective Rank
700 0.40 low-rank

previous layer + low-rank

800 -

[*)]

S

o
o
[
o

u

<)

1)
o
w
o

B
1)
1S)
;
o
[N
wn

Num of Rank
o
N
o

Relative Error
o
—
w

N
o
o
o
fa
o

100 0.05
0.00 . |
0 Q K \' (0] up gate down
0 1 2 3 4 5 6 7 8 9 10
Block Index
Activation residuals between layers After error compensation, recovery
exhibit low-rank property error is reduced by 9%~54%

[1] Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, arXiv:2509.18993, 2025

Center of Machine Learning Research <54 >

Low-Rank Activation Residuals Between Adjacent Layers in LLMs Bthl?

. . . ¥1 v [T 11111
« Similar cross-layer low-rank structure in MoE architecture II?ID i
f—b[Add + Normalize]1—
— /.§ /.&)
Relative Error of Activation Recovery for Qwen-3 MoE (Ratio: 0.25) ;"[rent | (Fen2) (Fena | [Fena | [ena) [Fenz | [Fens | [Fena :2
e low-rank el \ """""" p=08
0.44x 0.44x 0.55x i | low-rank =0.65 e
o e previous layer + low-ran p h
9)
w
g 1074 p :{ Add + Normalize]4—
& 1 1
S S Self-Attention
10-5 | \ A \ }
I embedcing D embecing
| . x1 [T x [T
Q K v 0 mlp More Parameters

« With the same rank, compensating with the previous layer's activations reduces the error by
16%~56%

[1] Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, arXiv:2509.18993, 2025

Center of Machine Learning Research

Theories behind low-rank structure in cross-layer activations

The (high cosine) similarity between adjacent layer activations makes their residuals low-rank

Assumption 1 (Cosine similarity of adjacent attentions). Forl=2,3,---,L, let Y, € R**? as the
activation of the linear of position P for the l-th layer. There exists a constant € € (0,1) such that:
<Y1P7Yl€1>F >1—¢
Y e - 1Y e ’
L where (-,-) p denotes the inner production of matrices induced by Frobenius norm.)
4 Theorem 1. Suppose Assumption 1 holds. Then there exists ro > 0 such that the approximation
Yz{) s obtained by Eq. (3) has a lower error than the direct low-rank approximation LR, (YF) bya
properly-selected B if r < rq. Specifically, it holds that:
~ 12 9
e T, < 17 - RO
Low-Rank Approximation with Direct Low-Rank
_ Error Compensation Approximation Y,

Cross-layer low-rank structure introduces smaller error

Center of Machine Learning Research
than direct low-rank approximation of activations.

ez XY

PEKING UNIVERSITY

< 56 >

Learnable scaling factors

P _ oPyP P AP pP
Y5 =8,Y, + X, Ay B,
* o and S; balance information between previous and current layers

« We make g, learnable to dynamically adjust the influence of historical activations and
low-rank output

LLaMA-2 350M LLaMA-2 1B
200 learnable B B=0.5 40 CR-Net with learnable 8
B=0.1 B=1.0 CR-Net with fixed B
2175 B=0.2 B=2.0 ;35
5 21.00 5
== 150 ‘ -_
o 20.75 o
1 . = 30
g_ 125 20.50 8_
-~ 20.25 c
© 100 (o]
.g 20.00 .'g 25
S 19.75 S
© 350 36000 37000 38000 39000 4000 ©
u>: 50 5 20
25
15
0 5000 10000 15000 20000 25000 30000 35000 40000 0 10000 20000 30000 40000 50000 60000 70000 80000
iterations iterations

<57 >

Center of Machine Learning Research

Cross-layer Low-Rank Residual Network (CR-Net) e 7) ¥

PEKING UNIVERSITY
= 1 1B "2 A ' ®
w2 Wi wyY) ! ! |
- Full-rank parameters in | LB LB LB ; B R S
the firsr transformer layer : 9 ; :
~ Self-Attention | Self-Attention | @
I : Residu_al
o connection
) Forlayer€:2,3,...’L é }BO > ® 00 > ®
% § % Element-wise
P P P P AP P v I} ‘) Aj'a - production
YE — /6 £ }/e_]_ _l_ X@ AE Be leae Wl poate BY poate B™ —_—
P > e 00 —s® Cross-layer
: > > o o @ > Resi |
Learnable factor - 3 —— r— e
Activation at position P i g g/ Re-compute
Boun Bloun activation
P e {Q,K,V,O0,gate, up, down} - > v @
Layer 1 Layer 2 Layer L

Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, submitted to NeurlPS 2025 <58 >

Cross-layer Low-Rank Residual Network (CR-Net) e ;Jf

« Full-size pre-trainin l i : A7
P J weoowE o 3 ©
p p p By \ SiLU
activation
)/E — XE We (m, n) e
~ Self-Attention < e_? |
 Parameter-efficient pre-training comnection
wy
P Py P P 4P P X
}/e — 66 }/E—l _|_ Xﬁ AE Bé € Element-wise
v I} production
(m, r), (r,n) ¥ m —
Cross-layer
Residual
» Reduce parameter from e % sl
mn to r(m + n) I
Wldwm Re—qom!)ute
* Leading to a smaller activation
model, gradient, and §
Optlmlzer States Layer 1 Layer 2 Layer L

Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, submitted to NeurlPS 2025 <59 >

CR-Net: Experimental results

Pretrain LLaMA on C4

<) »
N e 7) ¥

60M 130M 350M 1B
Approach
1.1B tokens 2.2B tokens 6.4B tokens 13.1B tokens

PPL Para Mem PPL Para Mem PPL Para Mem PPL Para Mem
Full-rank 3406 58 043 2436 134 100 1880 368 274 1556 1339 9.98
LoRA 3499 58 037 3392 134 086 2558 368 194 19.21 1339 6.79
ReLoRA 37.04 58 037 2937 134 0.86 29.08 368 194 18.33 1339 6.79
SLTrain 34.15 44 032 2604 97 072 1942 194 145 16.14 646 4.81
CoLA 34.04 43 032 2448 94 0.70 1940 185 138 1552 609 4.54
CR-Net® 3276 43 032 2431 90 0.67 1895 183 136 1528 583 435
Galore 3488 58 036 2536 134 0.79 1895 368 190 1564 1339 6.60
RSO 3455 58 036 2534 134 079 1887 368 190 1586 1339 6.60
Apollo 3155 58 036 2294 134 0.79 1685 368 190 1420 1339 6.60
CR-Net' 3276 43 032 2374 106 0.79 17.08 250 1.86 14.05 870 6.48

« CR-Net achieves lower loss with fewer parameters (~43.6% in LLaMA-2 1B)

« At equal memory, CR-Net achieves lower loss at larger scales

Center of Machine Learning Research

PEKING UNIVERSITY

The recomputation strategy of CR-Net

« CR-Net cannot directly save activation

(s, m)x (m, n)=(s,n):Lsn

Vanilla: Y = XFW}

CRNet: Y, =B, Y, + X, A By

(s, m)x (m, r)x(r,n)=(s, n): Lsn
 CR-Net + recomputation:

1
Y/ ==
14 /3é3

Only need the memory of: sn + Lsr

i

NI)
LD
=, %
N, o

8 -
> &

I502%

()/EP—)I—l o Xf—l—lAE—l—lBE—l—l)

It

I 1 i
Rt N
wy wi w
 Self-Attention | Self-Attention |
‘ !
4
Wy
BY
Ay Jf
! !
W]gate Wl'lP
©,
X
Wwiewn
Die
... >
Layer 1

Layer L

Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, submitted to NeurlPS 2025

Center of Machine Learning Research

ezt ¥

PEKING UNIVERSITY

@

SiLU
activation

S

Residual
connection

®

Element-wise
production

Cross-layer
Residual

[

Re-compute
activation

u‘”ulr »
NIECE R

508 PEKING UNIVERSITY

CR-Net: Memory saving

 Pre-trained on C4-en with LLaMA2-7B
« Rank: 1024 for CoLA-M, 896 for CR-Net

Table 4: Comparsion of validation perplexity ({) and memory ({) of different approaches in LLaMA-
7B pre-training tasks. The results of compared methods are referred from [38, 57].

Memory (GB) | 10K 40K 65K 80K

8-bit Adam 72.59 N.A. 18.09 N.A. 1547

8-bit Gal.ore 65.16 26.87 1794 N.A. 15.39
Apollo N.A. N.A. 1755 N.A. 14.39
CoLA-M 28.82 2276 16.21 14.59 13.82

CR-Net w. re-computation 27.60 23.11 16.01 1447 13.72
Training tokens (B) 1.3 5.2 8.5 10.5

 CR-Net achieves 62% memory saving with better performance than baselines

Center of Machine Learning Research

CR-Net: Computation saving

NELF TS

s PEKING UNIVERSITY

Vanilla: YKP = XEWEP (smn) CR-Net: Y:eP = 553/;11 + XEPAEBE

(s, m) x (M, n) = (s, n) : smn (s, n) + (s, m)x (m, r)x(r,n)=sn+s(m+n)r

 s: seq.length; h: hidden dimension; L: transformer layer; s=256, batch size=1

« Rank: 512 for other baselines, 448 for CR-Net (Ensures better validation perplexity of CR-Net.)

Approach FLOPs LLaMA-2 1B

Full-rank L(24sh? 4 12s*h + 18shh) 2.422 x 10'? (1.000x)

(Re)LoRA L(40sh?* + 24s°h + 30shhg) 4.054 x 102 (1.674x)
SLTrain L(24sh® 4+ 125°h + 18shhs + 24h*r + 18hhgr) 7.164 x 10"% (2.958x)
GalLore L(24sh® + 125°h + 18shhg + 16h*r + 12hhgr) 5.583 x 10** (2.305x)
CoLA L(48shr + 125°h + 18sr(h + hs)) 1.005 x 10** (0.415x)

CR-Net 24sh® + 12s°h + 18shhg + (L — 1)(48shr + 125°h 4 18sr(h + hg)) 0.934 x 10'? (0.385x)

 CR-Net uses 38.5% of the FLOPs compared to the standard LLaMA-2 1B network.

Center of Machine Learning Research

NIELE T

PEKING UNIVERSITY

CR-Net: Throughput

14000
13422
12000 12197
—~ 11506
2
. . C 10000
« CR-Net achieves 87% higher e
throughput than the standard model. S 000
)
o 7161 6838 6942 6770
_ . . £ 6000
* Even including communication =
overhead, CR-Net outperforms all f__e 4000 4556
baselines, with ~66% higher =
throughput than the standard model. 2000
0
Full-rank Galore Apollo ReLoRA SLTrain CoLA CR-Net CR-Net
(DP under
4 GPUs)

LLaMA-2 1B pre-training on 4 A100 GPUs

Center of Machine Learning Research

LR »
NEF T

508 PEKING UNIVERSITY

Hybrid between Vanilla and CR-Net

* Pre-training LLaMA-2 1B with sequence length s=256

« Rank: 512 for other baselines, 448 for CR-Net (Ensures better validation perplexity of CR-Net)

Algorithms Memory (GB) FLOPs (x 10'%)
Vanilla GCP + Full-rank 11.98 (1.000x) 2.067 (1.000x)
CoLA-M 12.04 (1.005%) 0.764 (0.370x)

CR-Net* 11.81(0.986 %) 0.692 (0.334 %) IR EILGE
CR-Net" 9.94(0.830x) 0.694 (0. 335X) rermp

« Compared to standard LLaMA-2 1B (vanilla GCP): At matched memory cost, CR-Net
achieves 67% faster computation.

Center of Machine Learning Research

CR-Net: Efficient in both memory and compute

 Memory and compute complexity across methods (LLaMA-2 1B/7B, BF16)

* In CR-Net, b = number of stored full activation layers (}: b=4, #: b=1)

« CoLA-M rank follows the literature; CR-Net rank r is tuned for best validation perplexity

Algorithms

LLaMA-2 1B LLaMA-2 7B

Memory (GB) FLOPs (x10'%) Memory (GB) FLOPs (x10'%)

Full-rank + Vanilla GCP 11.98 (1.000x) 2.133 (1.000x) 51.22 (1.000x) 2.119 (1.000X)

CoLA-M
CR-Net*
CR-Net"

12.04 (1.005x) 0.764 (0.358x) 24.78 (9.484x) 0.752 (0.355x)
11.81 (0.986%) 0.703 (9.330x) 23.35 (9.456x) 0.692 (2.326x)
9.94 (0.830x) 0.713 (0.334x) 22.42 (0.438%) 0.702 (0.331x)

Full-rank w.o. GCP

51.31 (4.283%) 0.764 (0.370x) 70.97 (1.386x) 1.608 (9.759%)

Center of Machine Learning Research

NELF TS

s PEKING UNIVERSITY

< 66 >

CR-Net: Ablations

%S PEKING UNIVERSITY

CR-Net (17.1711) 37.5 strategy S1 (19.4340)

45 ResFormer (17.5897) strategy S2 (19.3978)
> DenseFormer (21.9663) 2350 strategy S3 (19.5011)
"% 40 %
9 9 325 2ip
g, e
g_ g_ 30.0 19.8
5 30 512755 196
© T
3 5 25.0 19.4
E 25 E 4 47500 50000 52500 55000 57500 6000
o 2 22.5

20

20.0 T
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 60000
iterations iterations
Comparsion with ResFormer and DenseFormer Comparsion with different low-rank strategy

R. Tian, et. al., ResFormer: Scaling ViTs with Multi-Resolution Training, CVPR 2023

Matteo Pagliardini, et. al., DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging, NeurlPS 2024

Center of Machine Learning Research <67 >

NELF TR

PEKING UNIVERSITY

Summary

« Parameter matrices are not low-rank; direct low-rank

approximation leads to high error. T .
« Core ldea: Low-rank cross-layer residuals enable parameter- 5 —
efficient architecture

« Recomputation: Tailored recomputation cuts activation
memory, reducing compute by 66.6% at equal memory

« Emprical performance: Co-optimizes memory and compute: better performance with 43.6%
fewer parameters (1B) and 38.5% less memory (7B)

Boao Kong, Kun Yuan et al. CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, submitted to NeurlPS 2025

Center of Machine Learning Research <68 >

NPT

PEKING UNIVERSITY

PART 05

Summary and Future Work

Summary

Training and inference costs
rise sharply

'@' Cost scaling

Dramatic memory increase; Ultra-
large clusters for joint training

'@' Memory scaling

Increasing parameters and data

\ U4
'@. Power law

Increasing demand for improved
large model performance

Center of Machine Learning Research

£ R »
N e 7) ¥

PEKING UNIVERSITY

Approach 1: Design new architectures and explore
novel power-law principles

Approach 2: Develop new hardware (e.g., supernodes)
to reduce training and inference costs

Approach 3: Memory-efficient training methods drive
by model structure

Insight: As scale increases, LLMs contain significant structural redundancy

Conventional training wastes memory by ignoring implicit structure

 Low-rank gradients: Subspace training methods
(>75% optimizer state memory reduction)

» Sparse activations: Importance sampling
(>68% FFN activation memory reduction)

« Cross-layer low-rank activations: Parameter-efficient methods
(56% reduction in parameter & gradient memory)

[Model structure + Hardware—software co-design = Efficient training]

ez XY

PEKING UNIVERSITY

Future Work I: More Implicit Structures to Explore

Memory = Model + Gradient + Optimizer States + Activations

Beyond low-rank gradients and sparse/uniform activations, many hidden structures remain unexplored.

Layer 2 Head 0

4-Way Pipeline Parallelism —— m

— (®%) — —
-2 Wo.o Wo_1
; - & —
Wi o Wi 4 m W,
i | i
-5 W. o W, 4 Wa LW,

U i 2. 1
W, , : Worker mapped to Pipeline Stagey =~ ‘~----- ’
of Data Parallel Pipeline x

0 2 4 6 8 10 12 14

Local sparsity + Sink structures Parameter distribution patterns Redundancy in 3D parallel parameters
(reduce attention memory) (improved mixed-precision strategies) (robust training)

Discovering more structures will enable even more efficient training methods.

Center of Machine Learning Research <71>

Future Work ll: Saving Comm/Comp using Implicit Structures

In LLMs, compute and communication are as critical as memory.

NI)
ék\ llé‘
S) (
9 -
o) \
o
I502%

PEKING UNIVERSITY

Similar to memory, structural properties enable reductions in communication and compute.

Low-rank gradients are projected into low-dimensional subspace for momentum updates; significant reducing communication.

2048

Singular Value of Q Matrix Graident for Layer 10

Project into a lower-
dimensional space

10°
—— Step 0
810t +— Step 50
K —«— Step 100
R —— Step 200
Gradient G, B10- —— Step 210
@104 rank =~ 10
) <
1075
0
(
T n
g:.F P, Gt —(1/n) > iy 9
m = (1—B1)ms_1 + fig; S
Low-dimensional
Vi F (1 - ﬁg)'vt_l + /B2gt (® g, variables use minimal]
~ communication
(St — ® my
ow-dimensiona
*—’v@k, Low-dimensional
variables use
Xt+1 = Xt - Ptat minimal memory
\

subspace

(m,n)

It
(r,n)

Gy PtT Gt

Communication reduced
by ~4x, ideal for
heterogeneous networks

W\«w»wwuwwm

uuuuuuuuuuuuuuuuuuu

Total img/sec

P3.16xlarge/25 Gbps/ResNet50/32 batch size

40000 Framework
=== Horovod

30000 ™= BlueFog

20000 Significant throughput
improvement

10000
O__.
4 8 16 32

GPUs

128

Chuyan Chen, Kun Yuan, et. al., Greedy Low-Rank Gradient Compression for Distributed Learning with Convergence Guarantees, arXiv: 2507.08784, 2025

Future Work ll: Saving Comm/Comp using Implicit Structures

Motivation: Current memory-efficient pretraining/fine-tuning methods do not reduce computation

Algorithm Design: Random matrix sampling; Avoiding full-matrix multiplication, only important rows & columns

_ mnb FLOPs rnb FLOPs
Forward Propagation: ¥ = xW, + xBA = x(W + B,A,) +xBA
—)L L
Backward Propagation: oL =8—LWT +a—(BOA0)T +a—(BA)T
Ox Y &y y | = W x | = W o
: . oL OL — oL oL
Matrix Sampling: — = —[.i]W "[i,:]+ — (B, 4,)" +—(BA)"
pling: — ay[iw i]+8y(04o) +8y()
nxb nxm mxb nxr rxb
. . . rain/loss
MLP sampling 90%, attention sampling 40% -qqpmgiRA‘f Qap/LoR : wain/loss

0.8

Overall computation reduction: 38.57% o
Nearly lossless accuracy 06

0.5

Future work: During pretraining, achieve

. . 4 i
>30% computation savings L TR l
with minimal accuracy loss. O ORI gt ek . o5
0.2 ' ' I Crain/global _step”

200 400 600

Nearly identical performance to LoORA/Adam

15

5k 10k 15k 20k 0
Center of Machine Learning Research
G Chen, Y He, Y Hu, K Yuan, B Yuan, CE-LoRA: Computation-Efficient LORA Fine-Tuning for Language Models, arXiv 2502.01378, 2025

Future Work Il : Robust training using Implicit Structures

T
i .| 100K-GPU
| Motivation: By 2025, clusters will scale to 100K m WTBF Avallability | pyailability
i GPUs, encompassing millions of devices. Single- BvteD 175B 100+ failures over 000, |
i ; ; . _ . epvance ~ i
. device failures can halt entire training jobs, H LLM 8-15 hours ° - ;
i creating significant availability challenges. o Llama3.1 419 failures in 90% T
i eta 405B ~4 hours ? !
::ZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZZZ::ZZ::ZZIII:ZZIII:ZZIII:ZZIII:ZZIIIZZZIII:ZZIII:ZZIIIZZZIII:ZZIII:ZZIIIIZZIII:ZZIII:ZZIII:ZZIII:ZZIII:ZI%
i PP1 PP2 PP3 PP4 i
! Proposed Solution: Efficient and elastic training to . i
; P 9% o g === B85 Neighbor nodes run !
i support continuous training despite GPU failures. two pipeline tasks, i
i . . o2 GER X E ¥ creating memory & |
t Introduce mixed-precision parameter redundancy, !
E oo EEB aga e compute bottlenecks !
. pulling backups from neighboring devices. ;
l'.::
i Forward Propagation X_ > @ G—)—»Xout]
i Memory & Compute Trade-off: MHA activations LLaye, Norml[mHA |—] LLayer Norm]-[FeN |-/ i
i : . No D No D
i dominate GPU memory. Dropping the o rop o rop ;
i Backward Propagation VXm«@ : @ VX, i
i activations can save substantial GPU memory. ?,_|Laye, Norml<[MHA < L[Cayer Norm| <[FFN J §
i Drop Low-Rank Projection of Activation i
{___Center of Machine Learning Research_ |

R. Hu, K. Yuan, et. al., MeCeFO: Enhancing LLM Training Robustness via Fault-Tolerant Optimization, NeurlPS, 2025

Future Work Il : Robust training using Implicit Structures

Table 2: Throughput Performance and Degradation under Different Fault Frequencies

Model System Throughput (tokens/s) Throughput Drop (%)
No Fault Low Freq. Mid Freq. High Freq. Low Freq. Mid Freq. High Freq.
Bamboo 438.06k 428.90k 421.45k 407.22k 2.09 3.79 7.04
LLaMA-350M Oobleck 703.73k 674.15k 662.93k 632.40k 4.20 5.80 10.14
MeCeFO 1199.23k 1197.39k 1193.25k 1186.35k 0.15 0.50 1.07
Bamboo 153.75k 146.91k 144.66k 141.13k 4.45 591 8.21
LLaMA-1B Oobleck 291.05k 276.05k 268.29k 250.68k 5.16 7.82 13.87
MeCeFO 471.19k 464.79k 461.23k 457.13k 1.36 2.11 2.98
Bamboo 12.41k 11.45k 10.74k 9.82k 7.73 13.42 20.84
LLaMA-7B Oobleck 66.95k 57.05k 51.63k 48.14k 14.78 22.87 28.09
MeCeFO 111.12k 108.15k 107.70k 106.47k 2.67 3.08 4.18

Validation PPL of LLaMA after MeCeFO training for the same iterations across fault frequencies

Model No Fault Low-frequency Fault Medium-frequency Fault High-frequency Fault
Llama-350M 18.74 18.75 18.88 19.04
Llama-1B 15.49 15.51 15.61 15.83
Llama-7B 14.92 14.97 15.04 15.16
Center of Machine Learning Research <75>

R. Hu, K. Yuan, et. al., MeCeFO: Enhancing LLM Training Robustness via Fault-Tolerant Optimization, Submitted to NeurlPS 2025, 2025

Future work IV: Power-Law Optimized Model Architectures

é\\\”"é' »
N e 7) ¥

PEKING UNIVERSITY

Approach 1: Design new architectures and explore M

Training and inference costs novel power-law principles
A sharply Approach 2: Develop new hardware (e.g., supernodes)
.@. Cost scaling to reduce training and inference costs
. . Approach 3: Memory-efficient training methods driven
Dramatic memory increase; Ultra- bv model structure
large clusters for joint training y
‘@" _ Improving scaling Laws is a more fundamental direction to efficient training
A/ Memory scaling
< Jmage-to-Text Loss vs Compute
il Bl N | 10°
Increasing parameters and data e
gy 10’
@ Poverlaw
- 106
Increasing demand for improved | | S
N 3 10 Ty 2 x 10°
large model performance ‘\ ~. X . . | L5
10-° 104 1072 10°
| | Transformer performance ceiling Scaling slope declines
Center of Machine Learning Research

is hard to surpass

LLM Architecture: Linear Attention

LR »
NEF T

508 PEKING UNIVERSITY

4) 4)
Transformer Model RNN Model
N/ Efficient Training: support parallelism X Inefficient training: no parallelism
X Inefficient Inference: KV cache requires v/ Efficient Inference: 0(1) memory
___0(s) memory / - _/
o How to design more
Transformer Training efficient linear RNN Inference Paradigm
Paradigm attention?
o —
_ — . . B : -
Xp exp(QK ™) Linear Attentiony; >_ P(@)p(ki) ' v Training
Activation > d(q@oki) T Paradigm
1 N/ Efficient Training: match Transformers _
Kernel . o _ P()[2- ¢(ki) vi Inference
K Efficient Inference: convert to RNN . :
Activation—w \\/ without loss Y, W Paradigm

Center of Machine Learning Research

/ 2 z \!
References ez LY
S PEKING UNIVERSITY
[NeurlPS 2025] R. Hu, Y. He, R. Yan, M. Sun, B. Yuan, K. Yuan*, “MeCeFO: Enhancing LLM Training Robustness via Fault-Tolerant Optimization”, Advances

[ICML 2025]

[ICML 2025]

[ICML 2025]

[ICML 2025]

[ICML 2025]

[ICLR 2025]

[NeurlPS 2024]

[ICML 2024]

in Neural Information Processing Systems (NeurlPS), 2025.
Y. He, P. Li, Y. Hu, C. Chen, and K. Yuan*, “Subspace Optimization for Large Language Models with Convergence Guarantees”, International
Conference on Machine Learning (ICML), 2025.

Y. Chen, Y. Zhang, Y. Liu, K. Yuan*, and Z. Wen, “A Memory Efficient Randomized Subspace Optimization Method for Training Large
Language Models”, International Conference on Machine Learning (ICML), 2025.

Y. Song, P. Li, B. Gao, and K. Yuan*, “Distributed Retraction-Free and Communication-Efficient Optimization on the Stiefel Manifold”,
International Conference on Machine Learning (ICML), 2025.

L. Liang, G. Luo, X. Chen, and K. Yuan*, “Achieving Linear Speedup and Optimal Complexity for Decentralized Optimization over Row-
stochastic Networks”, International Conference on Machine Learning (ICML), 2025.

L. Chen, Q. Xiao, E. H. Fukuda, X. Chen, K. Yuan, and T. Chen, “Efficient Multi-Objective Learning under Preference Guidance: A First-
Order Penalty Approach”, International Conference on Machine Learning (ICML), 2025.

Y. Chen, Y. Zhang, L. Cao, K. Yuan*, and Z. Wen, “Enhancing Zeroth-Order Fine-Tuning for Language Models with Low-Rank Structures”,
International Conference on Learning Representations (ICLR), 2025.

S. Zhu, B. Kong, S. Lu, X. Huang, and K. Yuan*, “SPARKLE: A Unified Single-Loop Primal- Dual Framework for Decentralized Bilevel
Optimization”, Advances in Neural Information Processing Systems (NeurlPS), 2024

Y. He, J. Hu, X. Huang, S. Lu, B. Wang, and K. Yuan*, “Distributed Bilevel Optimization with Communication Compression”, International
Conference on Machine Learning (ICML), 2024.

Center of Machine Learning Research <78>

References

N e 7) P

PEKING UNIVERSITY

[NeurlPS 2023] Y. He, X. Huang, and K. Yuan*. “Unbiased Compression Saves Communication in Distributed Optimization: When and How Much?”,
Advances in Neural Information Processing Systems (NeurlPS), 2023.

[ICML 2023] L. Ding, K. Jin, B. Ying, K. Yuan, and W. Yin. “DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm”,
The International Conference on Machine Learning (ICML), 2023.

[NeurlPS 2022] X. Huang, Y. Chen, W. Yin, and K. Yuan*, “Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication
Compression”, Neural Information Processing Systems (NeurlPS), 2022.

[NeurlPS 2022] Z. Song, W. Li, K. Jin, L. Shi, M. Yan, W. Yin, and K. Yuan*, “Communication-Efficient Topologies for Decentralized Learning with O(1)
Consensus Rate”, Neural Information Processing Systems (NeurlPS), 2022.

[NeurlPS 2022] K. Yuan*, X. Huang, Y. Chen, X. Zhang, Y. Zhang, and P. Pan, “Revisiting Optimal Convergence Rate for Smooth and Non-Convex
Stochastic Decentralized Optimization”, Neural Information Processing Systems (NeurlPS), 2022

Preprint and New Submissions:

T. Wu, Y. He, B. Wang, and K. Yuan*, Mixture-of-Channels: Exploiting Sparse FFNSs for Efficient LLMs Pre-Training and Inference, 2025
B. Kong, J. Liang, Y. Liu, R. Deng, and K. Yuan*, CR-Net: Scaling Parameter-Efficient Training with Cross-Layer Low-Rank Structure, 2025

B. Kong, X. Huang, Y. Xu, Y. Liang, B. Wang, and K. Yuan*, Clapping: Removing Per-sample Storage for Pipeline Parallel Learning with Communication Compression, 2025

C Chen, Y He, P Li, W Jia, K Yuan*, Greedy Low-Rank Gradient Compression for Distributed Learning with Convergence Guarantees, arXiv:2507.08784, 2025

Center of Machine Learning Research <79>

<L 3 t (h
{50 / PEKING UN IVERSITY

Better LLM

Implicit structure
nspired algorithms
Dataset Ve pl) o) P J
y 4

"

Large Computing Cluster

1 Large

>

Thanks!

Kun Yuan homepage: https://kunyuan827.github.io/

https://kunyuan827.github.io/

