-
Subspace Optimization for Large Language Models with Convergence Guarantees
Y. He, P. Li, Y. Hu, C. Chen, and K. Yuan
International Conference on Machine Learning (ICML)
-
A Memory Efficient Randomized Subspace Optimization Method for Training Large Language Models
Y. Chen, Y. Zhang, Y. Liu, K. Yuan, and Z. Wen
International Conference on Machine Learning (ICML)
-
Distributed Retraction-Free and Communication-Efficient Optimization on the Stiefel Manifold
Y. Song, P. Li, B. Gao, and K. Yuan
International Conference on Machine Learning (ICML)
-
Achieving Linear Speedup and Optimal Complexity for Decentralized Optimization over Row-stochastic Networks
L. Liang, G. Luo, X. Chen, and K. Yuan
International Conference on Machine Learning (ICML) Spotlight
-
Efficient Multi-Objective Learning under Preference Guidance: A First-Order Penalty Approach
L. Chen, Q. Xiao, E. H. Fukuda, X. Chen, K. Yuan, and T. Chen
International Conference on Machine Learning (ICML) Spotlight
-
Understanding the Influence of Digraphs on Decentralized Optimization: Effective Metrics, Lower Bound, and Optimal Algorithm
L. Liang, X. Huang, R. Xin, K. Yuan
SIAM Journal on Optimization
-
BEVHeight++: Toward Robust Visual Centric 3D Object Detection
L. Yang, T. Tang, J. Li, K. Yuan, K. Wu, P. Chen, L. Wang, Y. Huang, L. Li, X. Zhang, K. Yu
IEEE Transactions on Pattern Analysis and Machine Intelligence
-
CE-LoRA: Computation-Efficient LoRA Fine-Tuning for Language Models
G. Chen, Y. He, Y. Hu, K. Yuan, and B. Yuan
arXiv preprint: 2502.01378
-
Enhancing Zeroth-Order Fine-Tuning for Language Models with Low-Rank Structures
Y. Chen, Y. Zhang, L. Cao, K. Yuan, and Z. Wen
International Conference on Learning Representations (ICLR)
-
Heavy-Tail phenomenon in decentralized SGD
M. Gurbuzbalaban, Y. Hu, U. Simsekli, K. Yuan, and L. Zhu
IISE Transactions
-
A Mathematics-Inspired Learning-to-Optimize Framework for Decentralized Optimization
Y. He, Q. Shang, X. Huang, J. Liu, and K. Yuan
arXiv preprint: 2410.01700
-
SPARKLE: A Unified Single-Loop Primal-Dual Framework for Decentralized Bilevel Optimization
S. Zhu, B. Kong, S. Lu, X. Huang, and K. Yuan
The Conference on Neural Information Processing Systems (NeurIPS)
-
S3 Attention: Improving Long Sequence Attention with Smoothed Skeleton Sketching
X. Wang, T. Zhou, J. Zhu, J. Liu, K. Yuan, T. Yao, W. Yin, R. Jin, H. Cai
IEEE Journal of Selected Topics in Signal Processing
-
Distributed Bilevel Optimization with Communication Compression
Y. He, J. Hu, X. Huang, S. Lu, B. Wang, and K. Yuan
International Conference on Machine Learning (ICML)
-
Asynchronous Diffusion Learning with Agent Subsampling and Local Updates
Elsa Rizk, Kun Yuan, Ali H. Sayed
The IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
-
Momentum Benefits Non-IID Federated Learning Simply and Provably
Z. Cheng , X. Huang, P. Wu, and K. Yuan
International Conference on Learning Representations (ICLR)
-
Decentralized Bilevel Optimization over Graphs: Loopless Algorithmic Update and Transient Iteration Complexity
B. Kong, S. Zhu, S. Lu, X. Huang, K. Yuan
arXiv preprint: 2402.03167
-
Sharper Convergence Guarantees for Federated Learning with Partial Model Personalization
Y. Chen, L. Cao, K. Yuan, and Z. Wen
arXiv preprint: 2309.17409
-
Lower Bounds and Accelerated Algorithms in Distributed Stochastic Optimization with Communication Compression
Y. He , X. Huang, Y. Chen, W. Yin, and K. Yuan
arXiv preprint: 2305.07612
-
An Enhanced Gradient-Tracking Bound for Distributed Online Stochastic Convex Optimization
S. A. Alghunaim and K. Yuan
Signal Processing
-
Unbiased Compression Saves Communication in Distributed Optimization: When and How Much?
Y. He , X. Huang, and K. Yuan
The Conference on Neural Information Processing Systems (NeurIPS)
-
Removing data heterogeneity influence enhances network topology dependence of decentralized SGD
K. Yuan, S. A. Alghunaim, and X. Huang
Journal of Machine Learning Research (JMLR)
-
Achieving Linear Speedup with Network-Independent Learning Rates in Decentralized Stochastic Optimization
H. Yuan, S. A. Alghunaim, and K. Yuan
IEEE Conference on Decision and Control (CDC)
-
On the Performance of Gradient Tracking with Local Updates
E. D. H. Nguyen, S. A. Alghunaim, K. Yuan, and C. A. Uribe
IEEE Conference on Decision and Control (CDC)
-
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
L. Ding, K. Jin, B. Ying, K. Yuan, and W. Yin
The International Conference on Machine Learning (ICML)
[Code]
-
AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation
Y.-F. Zhang, X. Wang, K. Jin, K. Yuan, Z. Zhang, L. Wang, R. Jin, and T. Tan
The International Conference on Machine Learning (ICML)
[Code]
-
BEVHeight: A Robust Framework for Vision-based Roadside 3D Object Detection
L. Yang, K. Yu, T. Tang, J. Li, K. Yuan, L. Wang, X. Zhang, and P. Chen
The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)
[Code]
-
Revisiting optimal convergence rate for smooth and non-convex stochastic decentralized optimization
K. Yuan, X. Huang, Y. Chen, X. Zhang, Y. Zhang, and P. Pan
The Conference on Neural Information Processing Systems (NeurIPS)
-
Communication-efficient topologies for decentralized learning with O(1) consensus rate
Z. Song, W. Li, K. Jin, L. Shi, M. Yan, W. Yin, and K. Yuan
The Conference on Neural Information Processing Systems (NeurIPS)
[Code] [Poster] [5-min video presentation]
-
Lower bounds and nearly optimal algorithms in distributed learning with communication compression
X. Huang, Y. Chen, W. Yin, and K. Yuan
The Conference on Neural Information Processing Systems (NeurIPS)
-
A unified and refined convergence analysis for non-convex decentralized learning
S. A. Alghunaim and K. Yuan
IEEE Transactions on Signal Processing
-
A Byzantine-resilient dual subgradient method for vertical federated learning
K. Yuan, Z. Wu, and Q. Ling
The IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
-
CHEX: Channel exploration for CNN model compression
Z. Hou, M. Qin, F. Sun, X. Ma, K. Yuan, Y. Xu, Y.-K. Chen, R. Jin, Y. Xie, and S.-Y. Kung
The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR)
[Code]
-
Effective model sparsification by scheduled Grow-and-Prune methods
X. Ma, M. Qin, F. Sun, Z. Hou, K. Yuan, Y. Xu, Y. Wang, Y.-K. Chen, R. Jin, and Y. Xie
The International Conference on Learning Representations (ICLR)
[Code]